
Verifying a Parameterized Border Array
in O(n1.5) Time

Tomohiro I1, Shunsuke Inenaga2, Hideo Bannai1, and Masayuki Takeda1

1Department of Informatics, Kyushu University
2Graduate School of Information Science and Electrical Engineering, Kyushu

University
744 Motooka, Nishiku, Fukuoka, 819–0395 Japan.

tomohiro.i@i.kyushu-u.ac.jp

inenaga@c.csce.kyushu-u.ac.jp

{bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. The parameterized pattern matching problem is to check if
there exists a renaming bijection on the alphabet with which a given
pattern can be transformed into a substring of a given text. A param-
eterized border array (p-border array) is a parameterized version of a
standard border array, and we can efficiently solve the parameterized pat-
tern matching problem using p-border arrays. In this paper we present
an O(n1.5)-time O(n)-space algorithm to verify if a given integer array
of length n is a valid p-border array for an unbounded alphabet. The
best previously known solution takes time proportional to the n-th Bell
number 1

e

∑∞
k=0

kn

k!
, and hence our algorithm is quite efficient.

1 Introduction

The parameterized matching (p-matching) problem [1] is a kind of string match-
ing problem, where a pattern is considered to occur in a text when there exists a
renaming bijection on the alphabet with which the pattern can be transformed
into a substring of the text. Parameterized matching has applications in e.g.
software maintenance, plagiarism detection, and RNA structural matching, thus
it has extensively been studied (e.g., see [2–6]).

In this paper we focus on parameterized border arrays (p-border arrays) [7],
which are a parameterized version of border arrays [8]. Let Π be the alpha-
bet. The p-border array of a given pattern p of length m can be computed in
O(m log |Π|) time, and the p-matching problem can be solved in O(n log |Π|)
time for any text p-string of length n, using the p-border array [7].

This paper deals with the reverse engineering problem on p-border arrays,
namely, the problem of verifying if a given integer array of length n is a p-border
array of some string. We propose an O(n1.5)-time O(n)-space algorithm to solve
this problem for an unbounded alphabet. We emphasize that the best previously
known solution to this problem takes time proportional to the n-th Bell number
1
e

∑∞
k=0

kn

k! , and hence our algorithm is quite efficient.

2 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Related Work. There exists a linear time algorithm to solve the reverse prob-
lem on p-border arrays for a binary alphabet [9]. An O(pn)-time algorithm to
enumerate all p-border arrays of length up to n on a binary alphabet was also
presented in [9], where pn denotes the number of p-border arrays of length at
most n for a binary alphabet.

In [10], a linear time algorithm to verify if a given integer array is the (stan-
dard) border array [8] of some string was presented. Their algorithm works for
both bounded and unbounded alphabets. A simpler linear-time solution for the
same problem for a bounded alphabet was shown in [11]. An algorithm to enu-
merate all border arrays of length at most n in O(bn)-time was given in [10],
where bn is the number of border arrays of length at most n.

The reverse engineering problems, as well as the enumeration problems for
other string data structures (suffix arrays, DAWG, etc.) have been extensively
studied [12–18], whose solutions give us further insight concerning the data struc-
tures.

2 Preliminaries

Let Σ and Π be two disjoint finite alphabets. An element of (Σ ∪Π)∗ is called
a p-string. The length of any p-string s is the total number of constant and
parameter symbols in s and is denoted by |s|. The string of length 0 is called the
empty string and is denoted by ε. For any p-string s of length n, the i-th symbol
is denoted by s[i] for each 1 ≤ i ≤ n, and the substring starting at position i
and ending at position j is denoted by s[i : j] for 1 ≤ i ≤ j ≤ n.

Any two p-strings s, t ∈ (Σ ∪ Π)∗ of length m are said to parameterized
match (p-match) if s can be transformed into t by a renaming function f from
the symbols of s to the symbols of t, where f is the identify on Σ. The p-matching
problem on Σ∪Π is reducible in linear time to the p-matching problem on Π [2].
Thus we will only consider p-strings over Π.

Let N be the set of non-negative integers. Let pv : Π∗ → N ∗ be the function
s.t. for any p-string s of length n > 0, pv(s) = u where, for 1 ≤ i ≤ n, u[i] = 0
if s[i] ̸= s[j] for any 1 ≤ j < i, and u[i] = i − k if k = max{j | s[i] = s[j], 1 ≤
j < i}. Let pv(ε) = ε. Two p-strings s and t of the same length m p-match iff
pv(s) = pv(t). For any p ∈ N ∗, let zeros(p) denotes the number of 0’s in p, that
is, zeros(p) = |{i | p[i] = 0, 1 ≤ i ≤ |p|}|. For any s ∈ Π, zeros(pv(s)) equals the
number of different characters in s. For example, aabb and bbaa p-match since
pv(aabb) = pv(bbaa) = 0 1 0 1. Note zeros(pv(aabb)) = zeros(pv(bbaa)) = 2.

A parameterized border (p-border) of a p-string s of length n is any inte-
ger j s.t. 0 ≤ j < n and pv(s[1 : j]) = pv(s[n − j + 1 : n]). For example,
the set of p-borders of p-string aabb is {2, 1, 0} since pv(aa) = pv(bb) = 0 1,
pv(a) = pv(b) = 0, and pv(ε) = pv(ε) = ε. We also say that b is a p-border
of p ∈ N ∗ if b is a p-border of some p-string s ∈ Π∗ and p = pv(s). The
parameterized border array (p-border array) βs of a p-string s of length n is
an array of length n such that βs[i] = j, where j is the longest p-border of
s[1 : i]. For example, for p-string s = aabbaa, βs = [0, 1, 1, 2, 3, 4]. When it is

Verifying a Parameterized Border Array in O(n1.5) Time 3

clear from the context, we abbreviate βs as β. Let P = {pv(s) | s ∈ Π∗} and
Pβ = {p ∈ P | β[i] is the longest p-border of p[1 : i], 1 ≤ i ≤ |β|}.

For any i, j ∈ N , let cut(i, j) = 0 if i ≥ j, and cut(i, j) = i otherwise. For
any p ∈ P and 1 ≤ j ≤ |p|, let suf (p, j) = cut(p[|p| − j + 1], 1)cut(p[|p| − j +
2], 2) · · · cut(p[|p|], j). Let suf (p, 0) = ε. For example, if p[1 : 10] =
0 0 2 0 3 1 3 2 6 3,

suf (p, 5) = cut(p[6], 1)cut(p[7], 2)cut(p[8], 3)cut(p[9], 4)cut(p[10], 5)

= cut(1, 1)cut(3, 2)cut(2, 3)cut(6, 4)cut(3, 5) = 0 0 2 0 3.

Then, for any p-string s ∈ Π∗ and 1 ≤ j ≤ |s|, suf (pv(s), j) = pv(s[|s| − j + 1 :
|s|]). Hence, j is a p-border of pv(s) iff suf (pv(s), j) = pv(s)[1 : j] for some
1 ≤ j < |s|.

This paper deals with the following problem.

Problem 1 (Verifying a valid p-border array). Given an integer array y of length
n, determine if there exists a p-string s such that βs = y.

To solve Problem 1, we can use the algorithm of Moore et al. [19] to generate
all strings in Pn = {p | p ∈ P, |p| = n} in O(|Pn|) time, and then we check if
p ∈ Py for each generated p ∈ Pn. Still, it is known that |Pn| is equal to the n-th
Bell number 1

e

∑∞
k=0

kn

k! .
As a much more efficient solution, we present our O(n1.5)-time algorithm in

the sequel.

3 Properties on Parameterized Border Arrays

Here we introduce important properties of p-border arrays that are useful to
solve Problem 1.

For any integer array ℓ, let |ℓ| denote the length of the integer array ℓ. Let
ℓ[i : j] denote a subarray of ℓ for any 1 ≤ i ≤ j ≤ |ℓ|. Let Γ = {γ | γ[1] = 0, 1 ≤
γ[i] ≤ γ[i − 1] + 1, 1 < i ≤ |γ|}. For any γ ∈ Γ and any i ≥ 1, let γk[i] = γ[i]
if k = 1, and γ[γk−1[i]] if k > 1 and γk−1[i] ≥ 1. By the definition of Γ , the
sequence i, γ1[i], γ2[i], . . . is monotonically decreasing and terminates with 1, 0.
Let A = {α | α ∈ Γ, α[i] ∈ {α1[i− 1] + 1, α2[i− 1] + 1, . . . , 1}, 1 < i ≤ |α|}. It is
clear that A ⊂ Γ . Let B denote the set of all p-border arrays.

Lemma 1. B ⊆ Γ .

Proof. By definition, it is clear that β[1] = 0 and 1 ≤ β[i] for any 1 < i ≤ |β|. For
any p ∈ Pβ and i, since suf (p[1 : i], β[i]) = p[1 : β[i]], suf (p[1 : i− 1], β[i]− 1) =
p[1 : β[i]− 1]. Thus β[i− 1] ≥ β[i]− 1, and therefore β[i] ≤ β[i− 1] + 1. ⊓⊔

Lemma 2. For any β ∈ B, p ∈ Pβ, and 1 ≤ i ≤ |p|, {β1[i], β2[i], . . . , 0} is the
set of p-borders of p[1 : i].

Lemma 3. For any β ∈ B, p ∈ Pβ, and 1 ≤ i ≤ |p|, if p[i] = 0, then p[b] = 0
for any b ∈ {β1[i], β2[i], . . . , 1}.

4 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Lemma 4. B ⊆ A.

Proof. For any β ∈ B, p ∈ Pβ and 1 < i ≤ |p|, since suf (p[1 : i], β[i]) =
p[1 : β[i]], suf (p[1 : i − 1], β[i] − 1) = p[1 : β[i] − 1]. Since β[i] − 1 is a p-
border of p[1 : i− 1], β[i]− 1 ∈ {β1[i− 1], β2[i− 1], . . . , 0} by Lemma 2. Hence,
β[i] ∈ {β1[i− 1] + 1, β2[i− 1] + 1, . . . , 1}. ⊓⊔

Definition 1 (Conflict Points). Let α ∈ A. For any c′, c (1 < c′ < c ≤ |α|),
if α[c′] = α[c] and c′ − 1 = αk[c− 1] with some k, then c′ and c are said to be in
conflict with each other. Such points are called conflict points.

Let Cα be the set of conflict points in α and Cα(c) be the set of points that
conflict with c (1 ≤ c ≤ |α|). For any i ≤ j ∈ N , let [i, j] = {i, i+1, . . . , j} ⊂ N .

We denote C
[i,j]
α = Cα∩ [i, j] and C

[i,j]
α (c) = Cα(c)∩ [i, j] to restrict the elements

of the sets within the range [i, j].

(2) (5)

()

(3) (8)

(10)

(7)

Fig. 1. The conflict tree of α =
[0, 1, 1, 2, 3, 4, 3, 1, 2, 1].

By Definition 1, C
[1,c]
α (c) = {c′} ∪

C
[1,c′]
α (c′) where c′ = maxC

[1,c]
α (c). Consider

a tree such that Cα ∪ {⊥} is the set of
nodes where ⊥ is the root, and {(c′, c) |
c ∈ Cα, c

′ = maxC
[1,c]
α (c)} ∪ {(⊥, c) | c ∈

Cα, C
[1,c]
α (c) = ∅} the set of edges. This tree

is called the conflict tree of α and it repre-
sents the relations of conflict points of α. Let
CTα(c) denote the set of children of node

c and CT
[i,j]
α (c) = CTα(c) ∩ [i, j]. We de-

fine orderα(c) to be the depth of node c and
maxcα(c) = max{orderα(c′) | c′ ∈ {c} ∪
Cα(c)}.

Fig. 1 illustrates the conflict tree for
α = [0, 1, 1, 2, 3, 4, 3, 1, 2, 1]. Here Cα =
{2, 3, 5, 7, 8, 10}, Cα(3) = {2, 10}, CTα(2) =
{3, 8}, orderα(2) = orderα(5) = 1, orderα(3) = orderα(7) = orderα(8) = 2,
orderα(10) = 3, maxcα(5) = maxcα(7) = maxcα(8) = 2, maxcα(2) =
maxcα(3) = maxcα(10) = 3, and so on.

Lemma 5 will be used to show the O(n1.5) time complexity of our algorithm
of Section 4.

Lemma 5. For any α[1 : n] ∈ A, n ≥ 1 +
∑

c∈Cα
⌊2orderα(c)−2⌋.

Proof. Let ct ∈ Cα with t ≥ 2, C
[1:ct]
α (ct) = {c1, c2, . . . , ct−1} with c1 < c2 <

· · · < ct. Let m = α[c1] = α[c2] = · · · = α[ct]. By the definition of Γ , for any 1 <
i ≤ n, α[i] ≤ α[i−1]+1. Then, it follows from (ct−1)−ct−1 ≥ α[ct−1]−α[ct−1]
that m+(ct − 1)− ct−1 ≥ α[ct − 1]. Consequently, by Definition 1, we have ct ≥
2ct−1−m from α[ct−1] ≥ ct−1−1. Hence, ct ≥ 2ct−1−m ≥ 22ct−2−m(1+2) ≥
· · · ≥ 2t−1c1−m

∑t−2
i=0 2

i = 2t−1c1−m(2t−1−1) = 2t−1(c1−m)+m ≥ 2t−1+m.
It leads to α[ct] − (α[ct − 1] + 1) ≤ m − ct−1 ≤ −2t−2. Since α[i] = 0 and

Verifying a Parameterized Border Array in O(n1.5) Time 5

β

p

c’ c
mm

Fig. 2. Let c, c′ ∈ Cβ and β[c′] = β[c] = m. Then, c′ ∈ Cβ(c), p[1 : m] = suf (p[1 :
c′],m) = suf (p[1 : c],m), and p[1 : c′ − 1] = suf (p[1 : c− 1], c′ − 1).

1 ≤ α[i] ≤ α[i− 1] + 1 for any 1 < i ≤ n, n− 1 should be greater than the value
subtracted over all conflict points. Therefore, the statement holds. ⊓⊔

The relation between conflict points of β ∈ B and p ∈ Pβ is illustrated in
Fig. 2.

Lemma 6 shows a necessary-and-sufficient condition for β[1 : i]m to be a
valid p-border array of some p[1 : i + 1] ∈ N ∗, when β[1 : i] is a valid p-border
array.

Lemma 6. Let β[1 : i] ∈ B, m ∈ N , and p[1 : i+ 1] ∈ N ∗. Then, β[1 : i]m ∈ B
and p[1 : i+ 1] ∈ Pβ[1:i]m if and only if

p[1 : i+ 1] ∈ P ∧ p[1 : i] ∈ Pβ[1:i] ∧ ∃k, βk[i] = m− 1 ∧ cut(p[i+ 1],m) = p[m]

∧
(
Cβ[1:i]m(i+ 1) ̸= ∅ ⇒

(
p[m] = 0 ∧ ∀c ∈ Cβ[1:i]m(i+ 1), p[i+ 1] ̸= p[c]

∧
(
∃c′ ∈ Cβ[1:i]m(i+ 1), p[c′] = 0 ⇒ m ≤ p[i+ 1] < c′

)))
.

Lemma 7 shows a yet stronger result, a necessary-and-sufficient condition for
β[1 : i]m to be a valid p-border array of length i + 1, when β[1 : i] is a valid
p-border array of length i.

Lemma 7. Let β[1 : i] ∈ B and m ∈ N . Then, β[1 : i]m ∈ B if and only if

∃k, βk[i] = m− 1

∧
(
Cβ[1:i]m(i+ 1) ̸= ∅ ⇒

(
∃p[1 : i] ∈ Pβ[1:i] s.t. p[m] = 0

∧
(
∃c′ ∈ Cβ[1:i]m(i+ 1), p[c′] = 0 ⇒ zeros(p[m : c′ − 1]) ≥ |Cβ[1:i]m(i+ 1)|

)))
.

Proofs of Lemmas 6 and 7 will be shown in a full version of this paper.
In the next section we design our algorithm to solve Problem 1 based on

Lemmas 6 and 7.

4 Algorithm

This section presents our O(n1.5)-time O(n)-space algorithm to verify if a given
integer array of length n is a valid p-border array for an unbounded alphabet.

6 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

4.1 Z-pattern Representation

Lemma 7 implies that, in order to check if β[1 : i]m ∈ B, it suffices for us to
know if p[i] is zero or non-zero for each i. Let ⋆ be a special symbol s.t. ⋆ ̸= 0.
For any p ∈ P and 1 ≤ i ≤ |p|, let ptoz (p)[i] = 0 if p[i] = 0, and ptoz (p)[i] = ⋆
otherwise. The sequence ptoz (p) ∈ {0, ⋆}∗ is called the z-pattern of p. For any
β ∈ B, let Zβ = {ptoz (p) | p ∈ Pβ}.

The next lemma follows from Lemmas 3, 6, and 7.

Lemma 8. Let β ∈ B and z ∈ {0, ⋆}∗. Then, z ∈ Zβ if and only if all of the
following conditions hold for any 1 ≤ i ≤ |z|:

1. i = 1 ⇒ z[i] = 0.
2. z[β[i]] = ⋆ ⇒ z[i] = ⋆.
3. ∃c ∈ Cβ , ∃k, i = βk[c] ⇒ z[i] = 0.
4. ∃c ∈ Cβ(i), z[c] = 0 ⇒ z[i] = ⋆.
5. i ∈ Cβ ∧ zeros(z[β[i] : i− 1]) < maxcβ(i)− 1 ⇒ z[i] = ⋆.
6. i ∈ Cβ ∧ zeros(z[β[i] : i− 1]) = orderβ(i)− 1 ⇒ z[i] = 0.

Let Eβ = {i | ∃c ∈ Cβ , ∃k, i = βk[c]}. For any z ∈ Zβ and i ∈ Eβ , z[i] is
always 0.

We check if a given integer array y[1 : n] is a valid p-border array in two
steps.

Step 1: While scanning y[1 : n] from left to right, check whether y[1 : n] ∈ A
and whether each position i (1 ≤ i ≤ n) of y satisfies Conditions 3 and 4
of Lemma 8. Also, we compute Ey, and ordery(i) and maxcy(i) for each
i ∈ Cy.

Step 2: For each i = 1, 2, . . . , n, we determine the value of z[i] so that the
conditions of Lemma 8 hold.

If we can determine z[i] for all i = 1, 2, . . . , n in Step 2, then the input array y
is a p-border array of some p ∈ P such that ptoz (p) = z.

4.2 Pruning Techniques

Given an integer array y of length n, we inherently have to search {0, ⋆}n for a z-
pattern z ∈ Zy. To achieve an efficient solution, we utilize the following pruning
lemmas.

For any β ∈ B and 1 ≤ i ≤ |β|, we write as u[1 : i] ∈ Zi
β if and only if

u[1 : i] ∈ {0, ⋆}∗ satisfies all the conditions of Lemma 8 for any j (1 ≤ j ≤ i).
For any h > i, let z[h] = 0 if h ∈ Eβ , and leave it undefined otherwise. Clearly,
for any z ∈ Zβ and 1 ≤ i ≤ |β|, z[1 : i] ∈ Zi

β .
We can use the contraposition of the next lemma for pruning the search tree

at each non-conflict point of y.

Lemma 9. Let β ∈ B and i /∈ Cβ (2 ≤ i ≤ |β|). For any u[1 : i − 1] ∈ Zi−1
β , if

u[β[i]] = 0 and there exists z ∈ Zβ s.t. z[1 : i] = u[1 : i − 1]⋆, then there exists
z′ ∈ Zβ s.t. z′[1 : i] = u[1 : i− 1]0.

Verifying a Parameterized Border Array in O(n1.5) Time 7

Proof. For any 1 ≤ j ≤ |β|, let v[j] = 0 if j = i, and v[j] = z[j] otherwise. Now
we show v ∈ Zβ . v[i] clearly holds all the conditions of Lemma 8. Since v[j] = z[j]
at any other points, v[j] satisfies Conditions 1, 2, 3 and 4. Furthermore, for any
c ∈ Cβ , v[c] holds Conditions 5 and 6, since zeros(v[β[c] : c− 1]) ≥ zeros(z[β[c] :
c− 1]) and z[c] holds those conditions. ⊓⊔

Next, we discuss our pruning technique regarding conflict points of y. Let
β ∈ B. c ∈ Cβ is said to be an active conflict point of β, iff Eβ∩({c}∪Cβ(c)) = ∅.
Obviously, for any z ∈ Zβ and c ∈ Cβ , z[c] = 0 if Eβ ∩ {c} ̸= ∅ and z[c] = ⋆ if
Eβ ∩Cβ(c) ̸= ∅. Hence we never branch out at any inactive conflict point during
the search for z ∈ Zβ . Let ACβ be the set of active conflict points in β. Our
pruning method for active conflict points is described in Lemma 10.

Lemma 10. Let β ∈ B, i ∈ ACβ and i ≤ r ≤ |β| with |CT
[1,r]
β (i)| < 2. For

any u[1 : i − 1] ∈ Zi−1
β , if u[1 : i − 1]0 ∈ Zi

β and there exists z[1 : r] ∈ Zr
β s.t.

z[1 : i] = u[1 : i− 1]⋆, then there exists z′[1 : r] ∈ Zr
β s.t. z′[1 : i] = u[1 : i− 1]0.

In order to prove Lemma 10, particularly to ensure Conditions 5 and 6 of
Lemma 8 hold, we will estimate the number of 0’s within the range [β[c], c− 1]
for each c ∈ Cβ that is obtained when the prefix of a z-pattern is u[1 : i − 1]0.
Here, for any α ∈ A and 1 ≤ b ≤ |α|, let Fα(b) = {b} ∪ {b′ | ∃k, b = αk[b′]} and

F
[i,j]
α (b) = Fα(b) ∩ [i, j]. Then, the number of 0’s related to i within the range

[β[c], c−1] can be estimated by |F [β[c],c−1]
β (i)|. The following lemmas show some

properties of Fα(b) that are useful to prove Lemma 10 above.

Lemma 11. Let α ∈ A. For any 1 ≤ b ≤ |α| and 1 < i < |α|,

|F [α[i+1],i]
α (b)|−|F [α[i],i−1]

α (b)|−
k′−1∑
k=1

|F [αk+1[i],αk[i]−1]
α (b)| =

1
if i ∈ Fα(b) and

αk′
[i] /∈ Fα(b),

0 otherwise,

where k′ is the integer such that αk′
[i] = α[i+ 1]− 1.

Proof. Since [α[i+ 1]− 1, i− 1] = [αk′
[i], αk′−1[i]− 1] ∪ [αk′−1[i], αk′−2[i]− 1] ∪

· · ·∪[α1[i], i−1], |F [α[i+1]−1,i−1]
α (b)| = |F [α[i],i−1]

α (b)|+
∑k′−1

k=1 |F [αk+1[i],αk[i]−1]
α (b)|

(See Fig. 3). Then, the key is whether each of i and α[i + 1] − 1 is in Fα(b) or
not. Obviously, if αk′

[i] = α[i + 1] − 1 ∈ Fα(b), then i ∈ Fα(b). It leads to the
statement. ⊓⊔

Lemma 11 implies that |F [α[i],i−1]
α (b)| is monotonically increasing for i.

Lemma 12. Let α ∈ A and c′, c ∈ Cα with c′ ∈ C
[1,c]
α (c). For any 1 ≤ b < c′,

|F [m,c−1]
α (b)| ≥ |F [α[c−1],c−2]

α (b)|+
k′−1∑
k=1

|F [αk+1[c−1],αk[c−1]−1]
α (b)|+ 1,

where m = α[c′] = α[c] and k′ is the integer such that αk′
[c− 1] = c′ − 1.

8 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

α[i +1]

i –1

i

α[i]α [i]2
α [i]k’–1

α [i]k’

Fig. 3. Illustration for Lemma 11. If αk′
[i] = α[i+ 1]− 1 ∈ Fα(b), then i ∈ Fα(b).

Proof. In a similar way to the proof of Lemma 11, we have |F [m,c−2]
α (b)| =

|F [α[c−1],c−2]
α (b)|+

∑k′−1
k=1 |F [αk+1[c−1],αk[c−1]−1]

α (b)|+ |F [m,c′−2]
α (b)|. Since c− 1 /∈

Fα(b) ⇒ αk′
[c− 1] = c′ − 1 /∈ Fα(b),

|F [m,c−1]
α (b)| ≥ |F [α[c−1],c−2]

α (b)|+
k′−1∑
k=1

|F [αk+1[c−1],αk[c−1]−1]
α (b)|+ |F [m,c′−1]

α (b)|.

Also, |F [m,c′−1]
α (b)| ≥ 1 follows from Lemma 11. Hence, the lemma holds. ⊓⊔

Lemma 13. For any α ∈ A, 1 ≤ b < b′ ≤ |α| and 1 ≤ i < |α|, |F [α[i+1],i]
α (b)| ≥

|F [α[i+1],i]
α (b′)|.

Proof. We will prove the lemma by induction on i. First, for any 1 ≤ i < b, it

is clear that |F [α[i+1],i]
α (b)| = |F [α[i+1],i]

α (b′)| = 0. Second, for any b ≤ i < b′, it

follows from Lemma 11 that |F [α[i+1],i]
α (b)| ≥ 1. Then, |F [α[i+1],i]

α (b)| ≥ 1 > 0 =

|F [α[i+1],i]
α (b′)|. Finally, when b′ ≤ i < |α|, let k′ be the integer such that αk′

[i] =
α[i+1]− 1. (I) When i /∈ Fα(b

′) or αk′
[i] = α[i+1]− 1 ∈ Fα(b

′). It follows from

Lemma 11 that |F [α[i+1],i]
α (b)| ≥ |F [α[i],i−1]

α (b)|+
∑k′−1

k=1 |F [αk+1[i],αk[i]−1]
α (b)| and

|F [α[i+1],i]
α (b′)| = |F [α[i],i−1]

α (b′)| +
∑k′−1

k=1 |F [αk+1[i],αk[i]−1]
α (b′)|. By the induction

hypothesis, we have |F [α[i],i−1]
α (b)| ≥ |F [α[i],i−1]

α (b′)| and |F [αk+1[i],αk[i]−1]
α (b)| ≥

|F [αk+1[i],αk[i]−1]
α (b′)| for any 1 ≤ k ≤ k′−1. Hence, |F [α[i+1],i]

α (b)| ≥ |F [α[i+1],i]
α (b′)|.

(II) When i ∈ Fα(b
′) and αk′

[i] = α[i+1]− 1 /∈ Fα(b
′). There always exists b′ ∈

{i, α1[i], . . . , αk′−1[i]}, and therefore |F [α[b′],b′−1]
α (b)| ≥ 1 > 0 = |F [α[b′],b′−1]

α (b′)|.
Then, |F [α[i+1],i]

α (b)| ≥ |F [α[i],i−1]
α (b)| +

∑k′−1
k=1 |F [αk+1[i],αk[i]−1]

α (b)| ≥ 1 +

|F [α[i],i−1]
α (b′)| +

∑k′−1
k=1 |F [αk+1[i],αk[i]−1]

α (b′)| = |F [α[i+1],i]
α (b′)|. Hence,

|F [α[i+1],i]
α (b)| ≥ |F [α[i+1],i]

α (b′)|. ⊓⊔

In a similar way, we have the next lemma.

Lemma 14. Let α ∈ A and c ∈ Cα with CTα(c) = {c′}. For any 1 ≤ i < |α|,
|F [α[i+1],i]

α (c)| ≥
∑

g∈G|F
[α[i+1],i]
α (g)|, where G = (C

[c,|α|]
α (c)− c′).

Now, we are ready to prove Lemma 10. We will use Lemmas 13 and 14.

Verifying a Parameterized Border Array in O(n1.5) Time 9

Proof. Let G = {g | g ∈ C
[i,r]
β (i), z[g] = 0}. Let v be the sequence s.t. for each

1 ≤ j ≤ r, v[j] = 0 if j ∈ Fβ(i), v[j] = ⋆ if there is g ∈ G s.t. j ∈ Fβ(g), and
v[j] = z[j] otherwise.

Now we show v ∈ Zβ . By the definition of v and u[1 : i − 1]0 ∈ Zi
β , it is

clear that v[j] holds Conditions 1, 2, 3 and 4 of Lemma 8 for any 1 ≤ j ≤ r.
Furthermore, u[1 : i− 1]⋆ ∈ Zi

β means that zeros(v[β[i] : i− 1]) ≥ maxcβ(i)− 1.

Hence, v[c] satisfies Conditions 5 and 6 for any c ∈ C
[1,r]
β (i) since zeros(v[β[c] :

c−1]) ≥ zeros(v[β[i] : i−1]) andmaxcβ(i)−1 ≥ maxcβ(c)−1. Then, as the proof
of Lemma 9, we have only to show zeros(v[β[c] : c−1]) ≥ zeros(z[β[c] : c−1]) for

any c ∈ Cβ . This can be proven by showing |F [β[c],c−1]
β (i)| ≥

∑
g∈G|F

[β[c],c−1]
β (g)|.

Since it is clear in case where G = ∅, we consider the case where G ̸= ∅. Let
c′ = CTβ(i). Note that |CTβ(i)| = 1 by the assumption. (I) When z[c′] = 0. Since
z[1 : r] satisfies Condition 4 of Lemma 8, G = {c′}. It follows from Lemma 13

that |F [β[c],c−1]
β (i)| ≥ |F [β[c],c−1]

β (c′)| for any c ∈ C
[1,r]
β . (II) When z[c′] ̸= 0.

It follows from Lemma 14 that |F [β[c],c−1]
β (i)| ≥

∑
g∈G|F

[β[c],c−1]
β (g)| for any

c ∈ C
[1,r]
β . Therefore, the lemma holds. ⊓⊔

4.3 Complexity Analysis

Algorithm 1 shows our algorithm that solves Problem 1.

Theorem 1. Algorithm 1 solves Problem 1 in O(n1.5) time and O(n) space for
an unbounded alphabet.

Proof. The correctness should be clear from the discussions in the previous sub-
sections.

Let us estimate the time complexity of Algorithm 1 until the CheckPBA func-
tion is called at Line 24. As in the failure function construction algorithm, the
while loop of Line 6 is executed at most n times. Moreover, for any 1 ≤ i ≤ n,
the values of z[i], prevc[i], and order [i] are updated at most once. When i is
a conflict point, Line 20 is executed at most ordery(i) − 1 times. Hence, it
follows from Lemma 5 that the total number of times Line 20 is executed is∑

c∈Cy
(ordery(c)− 1) ≤ 1 +

∑
c∈Cy

⌊2ordery(c)−2⌋ ≤ n.

Next, we show the CheckPBA function takes in O(n1.5) time for any input
α ∈ A. Let 2 ≤ r1 < r2 < · · · < rx ≤ n be the positions for which we execute
Line 6 or 10 when we first visit these positions. If such positions do not exist,
CheckPBA returns “valid” in O(n) time. Let us consider x ≥ 1. For any 1 ≤ t ≤ x,
let zt[1 : rt − 1] denote the z-pattern when we first visit rt and let lt = min{c |
c ∈ AC

[1,rt−1]
α , zt[c] = 0}. If x = 1 and such l1 does not exist, then CheckPBA

returns “invalid” in O(n) time. If x > 1, then there exists l1 as we reach rx.
Furthermore, there exists lt s.t. lt < r1 since otherwise we cannot get across r1.
Henceforth, we may assume l1 ≤ l2 ≤ · · · ≤ lx exist. Note that by the definition
of active conflict points, all elements of Fα(lt)−{lt} are not conflict points, and
therefore for any b ∈ Fα(lt), zt[b] = 0.

10 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Algorithm 1: Algorithm to verify p-border array

Input: an integer array y[1 :n]
Output: whether y is a valid p-border array or not
/* zeros[1 :n] : zeros[i] = zeros(z[1 : i]). zeros[0] = 0 for convenience. */

/* sign[1 :n] : sign[i] = 1 if i ∈ Ey, sign[i] = −1 if (C
[i,n]
y (i)∩Ey) ̸= ∅. */

/* prevc[1 :n] : prevc[i] = maxC
[1,i]
y (i), prevc[i] = 0 otherwise. */

if y[1 :2] ̸= [0, 1] then return invalid;1

sign[1 :n]← [1, 0, .., 0]; prevc[1 :n]← [0, .., 0]; order [1 :n]← [0, .., 0];2

maxc[1 :n]← [0, .., 0];
for i = 3 to n do3

if y[i] = y[i− 1] + 1 then continue;4

b′ ← y[i− 1]; b← y[b′];5

while b > 0 & y[i] ̸= y[b′ + 1] & y[i] ̸= b+ 1 do6

b′ ← b; b← y[b′];7

if y[i] = y[b′ + 1] then /* i conflicts with b′ + 1 */8

j ← y[i];9

while sign[j] = 0 & order [j] = 0 do /* z[y1[i]], z[y2[i]], . . . , z[0] must10

be 0 */

sign[j]← 1; j ← y[j];11

if sign[j] = −1 then return invalid;12

if sign[j] ̸= 1 then13

sign[j]← 1; j ← prevc[j];14

while j > 0 do /* ∀j ∈ C
[1,i]
y (i), z[j] must be ⋆ */15

if sign[j] = 1 then return invalid;16

sign[j]← −1; j ← prevc[j];17

if order [b′ + 1] = 0 then order [b′ + 1]← 1;18

prevc[i]← b′ + 1; order [i]← order [b′ + 1] + 1;19

maxc[i]← order [b′ + 1] + 1; j ← b′ + 1;
while j > 0 & maxc[j] < order [b′ + 1] + 1 do20

maxc[j]← order [b′ + 1] + 1; j ← prevc[j];21

else if y[i] ̸= b+ 1 then return invalid;22

cnt[1 :n]← [−1, ..,−1]; zeros[1]← 1;23

return CheckPBA(2, n, y[1 :n], zeros[1 :n], sign[1 :n], cnt[1 :n],24

prevc[1 :n], order [1 :n],maxc[1 :n]);

Here, let L1 = {c | c ∈ C
[l1+1,r1]
α , l1 < maxC

[1,c]
α (c)} and Lt = {c | c ∈

C
[rt−1+1,rt]
α , lt < maxC

[1,c]
α (c)} for any 1 < t ≤ x. Since L1, L2, . . . , Lx are

pairwise disjoint, |L| =
∑x

t=1|Lt|, where L =
∪x

t=1 Lt. It follows from Lemma 12

that |F [α[rt],rt−1]
α (lt)| − |F [α[rt−1],rt−1−1]

α (lt)| ≥ |Lt|. In addition, for any 1 ≤
t ≤ x, let Ein

t = Eα ∩ ([α[rt], rt − 1] − [α[rt−1], rt−1 − 1]}) and Eout
t = Eα ∩

([α[rt−1], rt−1 − 1] − [α[rt], rt − 1]}), where [α[r0], r0 − 1] = ∅. Since for any

Verifying a Parameterized Border Array in O(n1.5) Time 11

Function CheckPBA(i, n, y[1 : n], zeros[1 : n], sign[1 : n], cnt[1 : n], prevc[1 :
n], order [1 :n],maxc[1 :n])

Result: whether y is a valid p-border array or not
if i = n then return valid;1

if order [i] = 0 then /* i is not a conflict point */2

zeros[i]← zeros[i− 1] + zeros[y[i]]− zeros[y[i]− 1];3

return CheckPBA(i+ 1, n, y[1 :n], . . . ,maxc[1 :n]);4

if sign[i] = 1 then /* z[i] must be 0 */5

if zeros[i− 1]− zeros[y[i]− 1] < maxc[i]− 1 then return invalid;6

zeros[i]← zeros[i− 1] + 1;7

return CheckPBA(i+ 1, n, y[1 :n], . . . ,maxc[1 :n]);8

if sign[i] = −1 ∥ zeros[i− 1]− zeros[y[i]− 1] < maxc[i]− 1 then /* z[i] must9

be ⋆ */

if zeros[i− 1]− zeros[y[i]− 1] < order [i] then return invalid;10

zeros[i]← zeros[i− 1];11

return CheckPBA(i+ 1, n, y[1 :n], . . . ,maxc[1 :n]);12

/* from here sign[i] = 0 and zeros[i− 1]− zeros[y[i]− 1] ≥ maxc[i]− 1 */

if cnt[i] = −1 then /* first time arriving at i */13

cnt[i] + +; cnt[prevc[i]] + +14

if prevc[i] > 0 & sign[prevc[i]] = 1 then /* ∃c ∈ C
[1,i]
y (i), z[c] = 0 */15

sign[i]← 1; zeros[i]← zeros[i− 1];16

ret← CheckPBA(i+ 1, n, y[1 :n], . . . ,maxc[1 :n]); sign[i]← 0;17

return ret;18

sign[i]← 1; zeros[i]← zeros[i− 1] + 1;19

ret← CheckPBA(i+ 1, n, y[1 :n], . . . ,maxc[1 :n]); sign[i]← 0;20

if ret = valid ∥ cnt[i] < 2 then return ret;21

zeros[i]← zeros[i− 1];22

return CheckPBA(i+ 1, n, y[1 :n], . . . ,maxc[1 :n]);23

1 < t ≤ x, zeros(zt[α[rt−1] : rt−1 − 1]) ≥ zeros(zt−1[α[rt−1] : rt−1 − 1]) + 1,

zeros(zt[α[rt] : rt − 1])

≥ zeros(zt[α[rt−1] : rt−1 − 1]) + |Ein
t | − |Eout

t |
+|F [α[rt],rt−1]

α (lt)| − |F [α[rt−1],rt−1−1]
α (lt)|

≥ zeros(zt−1[α[rt−1] : rt−1 − 1]) + 1 + |Ein
t | − |Eout

t |+ |Lt|.

By recursive procedures, we have orderα(rx) ≥ 1 + zeros(zx[α[rx] : rx − 1]) ≥
zeros(z1[α[r1] : r1 − 1]) + x +

∑x
t=2|Ein

t | −
∑x

t=2|Eout
t | +

∑x
t=2|Lt|. Since

zeros(z1[α[r1] : r1−1]) ≥ 1+ |Ein
1 |+ |L1| and

∑x
t=1|Ein

t |−
∑x

t=2|Eout
t | ≥ 1, then

orderα(rx) ≥ 2 + x+ |L|.
Now, we evaluate the number of z-patterns we search for during the calls of

CheckPBA. Let C2(t) = {c | c ∈ C
[lt,rt]
α , |CT

[lt,rt]
α (c)| ≥ 2} for any 1 ≤ t ≤ x

and T ′ = {1} ∪ {t | 1 < t ≤ x, lt−1 < lt, |CT
[lt,rt−1]
α (lt)| = 0}. Let us assume

T ′ = {t′1, t′2, . . . , t′x′} with 1 = t′1 < t′2 < · · · < t′x′ ≤ x. By Lemmas 9 and 10,

12 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

1r1l

t’ = 11

2r2l

3r3l

4r4l

5r5l

t’ = 32

t’ = 53

Fig. 4. Relation between L and C2. A pair of a big circle and a small circle connected
by an arc represents a parent-child relation in the conflict tree. ⃝ is a position in C.
• or ◦ is a position in L. ⊘ is a position not in L.

the number of z-patterns searched for between lt′j and rt′j+1−1 is at most 2|C
′
2(t

′
j)|

for any 1 ≤ j ≤ x′, where t′x′+1 − 1 = x and C ′
2(t

′
j) =

∪t′j+1−1

t=t′j
C2(t). Then,

the total number of z-patterns is at most
∑x′

j=1 2
|C′

2(t
′
j)|. By Lemma 10, for any

1 ≤ j < x′, lt′j must be in C ′
2(t

′
j) and by the definition of T ′, lt′j is only in

C ′
2(t

′
j). Hence, if C2 =

∪x
t=1 C2(t), then |C ′

2(t
′
j)| ≤ |C2| − (x′ − 2), and therefore∑x′

j=1 2
|C′

2(t
′
j)| ≤ 4x′2|C2|−x′

.

Finally, we consider the relation between L and C2 (See Fig. 4). By the defi-
nition of L and C2, for any c ∈ (C2 −{l1, l2, . . . , lx}), |CTα(c)∩L| ≥ 2. In addi-
tion, by the definition of T ′, for any c ∈ (C2∩{l1, l2, . . . , lx}−{lt′1 , lt′2 , . . . , lt′x′

}),
|CTα(c) ∩ L| ≥ 1. Here, let x′′ = |{l1, l2, . . . , lx} − {lt′1 , lt′2 , . . . , lt′x′

}|. Clearly,
x′+x′′ ≤ x. For these reasons, orderα(rx) ≥ 2+x+|L| ≥ 2+x+2|C2|−2(x′+x′′)+
x′′ ≥ 2+2|C2|−x′. It follows from Lemma 5 that n ≥ 1+

∑
c∈Cα

⌊2orderα(c)−2⌋ >
1+

∑2+2|C2|−x′

i=2 2i−2 = 22|C2|−x′+1 and
√
n > 2

1+x′
2 2|C2|−x′

> x′2|C2|−x′
. Hence,

the total time complexity is proportional to n
∑x′

j=1 2
|C′

2(t
′
j)| ≤ 4nx′2|C2|−x′

<

4n
√
n.

The space complexity is O(n) as we use only a constant number of arrays of
length n. ⊓⊔

5 Conclusions and Open Problems

We presented an O(n1.5)-time O(n)-space algorithm to verify if a given integer
array y of length n is a valid p-border array for an unbounded alphabet. In case
y is a valid p-border array, the proposed algorithm also computes a z-pattern

Verifying a Parameterized Border Array in O(n1.5) Time 13

z ∈ {0, ⋆}∗ s.t. z ∈ Zy, and we remark that some sequence p ∈ Py s.t. ptoz (p) = z
is then computable in linear time from z.

Open problems of interest are: (1) Can we solve the p-border array reverse
problem for an unbounded alphabet in o(n1.5) time? (2) Can we efficiently solve
the p-border array reverse problem for a bounded alphabet? (3) Can we effi-
ciently count p-border arrays of length n?

References

1. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52(1) (1996) 28–42

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3) (1994) 111–115

3. Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees.
In: Proc. FOCS’95. (1995) 631–637

4. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM
Transactions on Algorithms 3(3) (2007) Article No. 29.

5. Apostolico, A., Erdös, P.L., Lewenstein, M.: Parameterized matching with mis-
matches. Journal of Discrete Algorithms 5(1) (2007) 135–140

6. I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight parameterized
suffix array construction. In: Proc. IWOCA. (2009) 312–323

7. Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. Theo-
retical Computer Science 154(2) (1996) 203–224

8. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Re-
port 40, University of California, Berkeley (1970)

9. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays
for a binary alphabet. In: Proc. LATA’09. Volume 5457 of LNCS. (2009) 422–433

10. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying
a border array in linear time. J. Comb. Math. and Comb. Comp. 42 (2002) 223–236

11. Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. Journal
of Automata, Languages and Combinatorics 10(1) (2005) 51–60

12. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
Theoretical Informatics and Applications 36 (2002) 249–259

13. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Proc. MFCS’03. Volume 2747 of LNCS. (2003) 208–217

14. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoretical Com-
puter Science 395(2-1) (2008) 220–234

15. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
Proc. STACS’09. (2009) 289–300

16. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of
border arrays and validation of string matching automata. RAIRO - Theoretical
Informatics and Applications 43(2) (2009) 281–297

17. Gawrychowski, P., Jez, A., Jez, L.: Validating the Knuth-Morris-Pratt failure
function, fast and online. In: Proc. CSR’10. (2010) To appear.

18. Crochemore, M., Iliopoulos, C., Pissis, S., Tischler, G.: Cover array string recon-
struction. In: Proc. CPM’10. (2010) To appear.

19. Moore, D., Smyth, W., Miller, D.: Counting distinct strings. Algorithmica 23(1)
(1999) 1–13

