
Palindrome Pattern Matching

Tomohiro I1, Shunsuke Inenaga2, and Masayuki Takeda1

1Department of Informatics, Kyushu University
2Graduate School of Information Science and Electrical Engineering,

Kyushu University
744 Motooka, Nishiku, Fukuoka 819–0395, Japan
{tomohiro.i, takeda}@inf.kyushu-u.ac.jp

inenaga@c.csce.kyushu-u.ac.jp

Abstract. A palindrome is a string that reads the same forward and
backward. For a string x, let Pals(x) be the set of all maximal palin-
dromes of x, where each maximal palindrome in Pals(x) is encoded by a
pair (c, r) of its center c and its radius r. Given a text t of length n and
a pattern p of length m, the palindrome pattern matching problem is to
compute all positions i of t such that Pals(p) = Pals(t[i : i + m − 1]).
We present linear-time algorithms to solve this problem.

1 Introduction

A palindrome is a symmetric string that reads the same forward and backward.
Namely, a string w is a palindrome if w = xaxR where x is a string, xR is a
reversal of x, and a is either a single character or the empty string.

Recently, palindromic structures in strings have been extensively studied:
A string of length n is called palindromic rich (or simply rich) if it contains
n + 1 distinct palindromes (including the empty string). It is known that any
string of length n can contain at most n + 1 distinct palindromes [6]. A unified
study of palindromic richness of finite and infinite strings was initiated in [7]. A
close relationship between palindromic richness and the Burrows-Wheeler trans-
form [5] was recently discovered in [16]. Another concept regarding palindromic
structures is palindrome complexity [1, 4, 2] of a string, which is the number of
palindromic substrings of a given length in the string.

There exist several efficient algorithms that solve interesting problems on
palindromes: A linear-time algorithm to check if a given string is palindromic rich
or not, is presented in [8]. One can compute the set of all maximal palindromes of
a given string in linear time [13]. The reverse engineering problem of computing
a string from a given set of maximal palindromes is solvable in linear time [11],
and its closely related problem is also considered in [14].

In this paper, we introduce a new paradigm of pattern matching based
on palindromes in strings. Two strings of same length m are said to be pal-
equivalent iff the length of the maximal palindrome at every center in the strings
is equal [11]. Given a text string t and a pattern string p, we are interested in
finding all text positions i (1 ≤ i ≤ n) such that p and t[i : i + m − 1] are



2 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

pal-equivalent, where n and m are text and pattern lengths, respectively. This
problem is called the palindrome pattern matching.

It is not difficult to see that the palindrome pattern matching problem can
be solved in O(nm) time: We pre-compute all maximal palindromes for t and p
using linear time algorithms [13, 9]. For every text position i, we compare the
length of the maximal palindromes of t at position i + j − 1 and that of p at
position j for every 1 ≤ j ≤ m. If a maximal palindrome of the text “goes over”
the interval [i : i+j−1], then the left and right arms of the maximal palindrome
are trimmed accordingly for comparison.

There exists a linear-time algorithm for small alphabets. In [11] it was shown
that if the alphabet size is at most 3, then two strings are pal-equivalent iff those
strings parameterized match [3]. Hence the palindrome pattern matching can be
solved in O(n + m) time for ternary and smaller alphabets.

In this paper, we present efficient solutions for larger alphabets. Firstly, we
present an algorithm which solves the problem in O(n+m) time for arbitrary al-
phabets. This algorithm is a palindrome-pattern-matching version of the Morris-
Pratt [15] pattern matching algorithm. Secondly, we propose another algorithm
that uses a new text indexing structure called the palindrome suffix trees. We
show that palindrome suffix trees can be constructed in O(n log σ) time, where σ
is the alphabet size. Using the palindrome suffix tree, we can solve the problem
in O(m log σ + r) time, where r is the number of text positions to report.

The algorithms of this paper are applicable to several practical problems, e.g.,
in bioinformatics. For instance, similar palindromic sequences often need to be
identified in DNA and RNA sequence analysis [9]. Sequences having similar palin-
dromic structures may code for similar 3-D structures of the respective molecules,
leading to possible functional interpretation of the identified sequences. Due to
the size of genomes, efficiency of search methods is of great importance.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is a string of length 0, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a
prefix, substring, and suffix of w, respectively. The i-th character of a string w
is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w that begins
at position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|.
For convenience, let w[i : j] = ε if j < i.

For any string w, let wR denote the reversed string of w, that is, wR =
w[|w|] · · ·w[2]w[1]. A string w is called a palindrome if w = wR. If |w| is even,
then w is called an even palindrome, that is, w = xxR for some x ∈ Σ∗. If |w|
is odd, then w is called an odd palindrome, that is, w = xaxR for some x ∈ Σ∗

and a ∈ Σ. The radius of a palindrome w is |w|
2 .

The center of a palindromic substring w[i : j] of a string w is i+j
2 . A palin-

dromic substring w[i : j] is called the maximal palindrome at the center i+j
2 if

no other palindromes at the center i+j
2 have a larger radius than w[i : j], i.e.,



Palindrome Pattern Matching 3

if w[i − 1] 6= w[j + 1], i = 1, or j = |w|. In particular, a maximal palindrome
w[i : |w|] is called a suffix palindrome of w.

Let Pals(w) be the set of all center-distinct maximal palindromes where each
element is encoded by a pair of its center and radius, namely,

Pals(w) =
{

(c, r)
∣∣∣ w[c− r + 0.5 : c + r − 0.5] is a maximal palindrome

at center c = 1, 1.5, 2, . . . , n

}
,

Also, let

SPals(w) = {(c, r) | (c, r) ∈ Pals(w), c + r − 0.5 = |w|},

namely, SPals(w) represents the set of all suffix palindromes of w.
For example, let w = abbacabbba. Then

Pals(w) = {(1, 0.5), (1.5, 0), (2, 0.5), (2.5, 2), (3, 0.5), (3.5, 0), (4, 0.5), (4.5, 0),
(5, 3.5), (5.5, 0), (6, 0.5), (6.5, 0), (7, 0.5), (7.5, 1), (8, 2.5), (8.5, 1),
(9, 0.5), (9.5, 0), (10, 0.5)} and

SPals(w) = {(8, 2.5), (10, 0.5)}.

Theorem 1 ([13]). For any string w of length m, Pals(w) can be computed in
O(m) time.

Throughout this paper, we assume that the elements of Pals(w) are sorted in in-
creasing order of centers c. Actually, the algorithm of [13] computes the elements
of Pals(w) in this order.

In this paper, we tackle the following problem.

Problem 1 (Palindrome pattern matching, pal-matching in short). Given a text
string t of length n and a pattern string p of length m, compute all positions i
of t such that Pals(p) = Pals(t[i : i + m− 1]).

3 Linear-time Palindrome Pattern Matching Algorithm

To achieve a linear time solution to Problem 1, we design a pal-matching version
of the Morris-Pratt algorithm [15].

Definition 1. A palindrome border (pal-border in short) of a string p of length
m is any integer j s.t. 0 ≤ j < m and Pals(p[1 : j]) = Pals(p[m− j + 1 : m]).

For example, the set of pal-borders of string p = aabcdaacdbcc, is {7, 2, 1, 0},
since Pals(aabcdaa) = Pals(aacdbcc), Pals(aa) = Pals(cc), Pals(a) = Pals(c),
and Pals(ε) = Pals(ε).

Let N be the set of non-negative integers. For any string p of length m,
let Pal Borderp : N → N be the function such that Pal Borderp(m) equals
the largest pal-border of string p. When clear from the context, we abbreviate
Pal Borderp as Pal Border . Since Pal Border(m) is strictly smaller than m,



4 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

we finally obtain 0 by iteratively applying the function Pal Border to m. For
any function f : N → N and any m, k ∈ N , we define fk(m) as follows:
fk(m) = f(m) if k = 1, and fk(m) = f(fk−1(m)) if k ≥ 2. Similar to a
standard border of a string [15], the following lemma holds.

Lemma 1. For any string p of length m, let k be the smallest integer such that
Pal Borderk(m) = 0. Then

Pal Border(m),Pal Border2(m), . . . ,Pal Borderk(m)

are all the pal-borders of p with m > Pal Border(m) > Pal Border2(m) > · · · >
Pal Borderk(m) = 0.

Definition 2. The palindrome border array (pal-border array) βp of a string p
of length m is an integer array of length m such that βp[i] = Pal Borderp[1:i](i)
for each 1 ≤ i ≤ m.

For example, for string p = aabbaa, we have βp = [0, 1, 1, 2, 3, 4]. When it is
clear from the context, we abbreviate βp as β.

In what follows, we present how to compute the pal-border array βp of a
given string p in linear time.

For any string w of length m ≥ 1, let Lpalw be an integer array of length m
such that

Lpalw[i] = max{i− k + 1 | w[k : i] = w[k : i]R, 1 ≤ k ≤ i}.
That is, the value of Lpalw[i] is equal to the length of the longest palindrome that
ends at position i in w, for every 1 ≤ i ≤ m1. Note that the above palindrome
w[k : i] is not necessarily a maximal palindrome at center k+i

2 in w.
For example, for string w = abbacabbba, Lpalw = 1 1 2 4 1 3 5 7 3 5.
The following lemma is a key to solve Problem 1 of pal-matching.

Lemma 2. For any strings w, z ∈ Σ+, Pals(w) = Pals(z) iff Lpalw = Lpalz.

Proof. (=⇒) We prove the claim by contradiction. Assume for contrary that
Lpalw 6= Lpalz. Then there exists position i such that Lpalw[i] 6= Lpalz[i]. As-
sume w.l.o.g. that Lpalw[i] < Lpalz[i]. Let k = (Lpalz[i])/2. The radius of the
maximal palindrome centered at position i − k + 0.5 of w is less than k, how-
ever, that of the maximal palindrome centered at position i − k + 0.5 of z is
at least k. This contradicts the assumption that Pals(w) = Pals(z). Hence if
Pals(w) = Pals(z), then Lpalw = Lpalz.

(⇐=) We prove the claim by contradiction and infinite descent. Assume for
contrary that Pals(w) 6= Pals(z). Then there exists center c such that (c, r) ∈
Pals(w), (c, u) ∈ Pals(z), and r 6= u. Assume w.l.o.g. that r < u.

In what follows, we consider position j = dc + ue − 1.

1. When Lpalw[j] < 2u. Since (c, u) ∈ Pals(z), Lpalz[j] ≥ 2u. This contradicts
the assumption that Lpalw = Lpalz.

1 The notion of Lpalw[i] was previously introduced in [8], denoted LPS[i] therein.



Palindrome Pattern Matching 5

w

z

j

j

c

c

r

u

k

k

r

u

c'

c'

Fig. 1. Illustration for infinite descent in the proof of Lemma 2.

2. When Lpalw[j] ≥ 2u. Let k = (Lpalw[j])/2. Then clearly w has a palindrome
that is centered at j−k+0.5 and is of radius k. Also z has a palindrome that
is centered at j−k+0.5 and is of radius k, since otherwise it contradicts the
assumption that Lpalw = Lpalz. Then there exists center c′ < c such that
(c′, r) ∈ Pals(w), (c′, u) ∈ Pals(z), and r < u. (See also Fig. 1.)
The same must hold for those smaller centers, ad infinitum. However, this is
impossible since w and z are finite strings.

Hence if Lpalw = Lpalz, then Pals(w) = Pals(z). ut
It is shown in [8] that Lpalw can be computed in linear time from Pals(w).

The following lemma is essentially the same as what is claimed in [8], but is
more specifically tailored for our needs.

Lemma 3. Let w be any string of length m. Given Pals(w), Lpalw can be com-
puted in O(m) time, in an on-line fasion, from Lpalw[1] to Lpalw[m].

Proof. For any position i of w with 1 ≤ i ≤ m, the value of Lpalw[i] is equal to
2(i−c)+1 where c is the smallest center of a maximal palindrome (c, r) ∈ Pals(w)
such that c + r ≥ i. Hence we process the given string w from left to right.

Assume that we have computed Lpalw[1 : i] and let (c, r) ∈ Pals(w) with
Lpalw[i] = 2(i − c) + 1. Now we compute Lpalw[i + 1]. If c + r ≥ i + 1, then
Lpalw[1:i+1] = 2((i + 1) − c) + 1. Otherwise, we increment the value of c by 0.5
until satisfying c + r ≥ i + 1, where r is the radius of the maximal palindrome
with the updated center c.

A pseudo-code of the algorithm is shown in Algorithm 1. The correctness
should be clear from the above arguments. Note that the value of c does not
decrease and does not exceed the value of i. Also, (c, r) can be picked up from
Pals(w) in constant time at each step, since Pals(w) is sorted in increasing order
of c. Consequently the time complexity is linear in m. ut



6 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

Algorithm 1: On-line algorithm to compute Lpalw of w.
Input: String w of length m.
Output: Lpalw[1 : m].
compute Pals(w);1

c← 1; let (c, r) ∈ Pals(w);2

for i← 1 to m do3

while c + r < i do4

c← c + 0.5; let (c, r) ∈ Pals(w);5

Lpalw[i]← 2(i− c) + 1;6

return Lpalw[1 : m];7

w

s i

c

(s+i)/2

1

c2

c3

Fig. 2. If (c3, r3) is the maximal palindrome in Pals(w) such that c3 is the smallest
center satisfying c3 ≥ (s + i)/2 and c3 + r3 ≥ i, c3 is the active center for s and i, and
Lpalw[s:i][i − s + 1] = 2(i − c3) + 1. Note that c1 is not the active center for s and i
since c1 < (s + i)/2.

Let w be any string of length m, and let s and i be any integers with 1 ≤
s ≤ i ≤ m. Here we consider computing Lpalw[s:i][i − s + 1] from Pals(w). By
the definition of Lpal , the value of Lpalw[s:i][i − s + 1] is equal to 2(i − c) + 1,
where (c, r) is the maximal palindrome in Pals(w) such that c is the smallest
center satisfying c ≥ (s+ i)/2 and c+ r ≥ i (See also Fig. 2). We call this center
c the active center for s and i w.r.t. w, and denote it by ACw(s, i). It holds that
Lpalw[s:i][i− s + 1] = 2(i−ACw(s, i)) + 1.

Lemma 4. Let w be any string of length m. For any integers s, i, s′, i′ with
1 ≤ s ≤ i ≤ m and 1 ≤ s′ ≤ i′ ≤ m, if s ≤ s′ and i ≤ i′, then ACw(s, i) ≤
ACw(s′, i′).

Proof. Assume for contrary that ACw(s, i) > ACw(s′, i′). Since ACw(s, i) ≤ i,
ACw(s′, i′) < i. Let (ACw(s′, i′), r) ∈ Pals(w). It follows from ACw(s′, i′) ≥
(s′ + i′)/2 ≥ (s + i)/2 and ACw(s′, i′) + r ≥ i′ ≥ i that ACw(s′, i′) ≥ (s + i)/2
and ACw(s′, i′) + r ≥ i. However this contradicts that ACw(s, i) is the active
center for s and i w.r.t. w. ut
In the algorithms which follow, we will need to know the value of Lpalw[s:i][i−
s + 1] for some s and i. It seems difficult to compute Lpalw[s:i][i − s + 1] in
constant time for “randomly” chosen s and i, with O(m)-time preprocessing.



Palindrome Pattern Matching 7

Algorithm 2: Algorithm to compute βp of a given string p.
Input: String p of length m.
Output: Pal-border array βp[1 : m].
compute Pals(p) and Lpalp[1 : m];1

βp[1]← 0;2

j ← 0; c← 0;3

for i← 2 to m do4

while true do5

c← max{c, i− j/2}; let (c, r) ∈ Pals(p);6

while c + r < i do /* Shift c to AC p(i− j, i). */7

c← c + 0.5; let (c, r) ∈ Pals(p);8

/* 2(i− c) + 1 = Lpalp[i−j:i][j + 1]. */

if Lpalp[j + 1] = 2(i− c) + 1 then break;9

j ← βp[j];10

j ← j + 1;11

βp[i]← j;12

return βp[1 : m];13

Nevertheless, Lemma 4 suggests that, if s and i monotonically increase from
1 to m, then the total cost for computing Lpalw[s:i][i − s + 1] for all s and i
never exceeds the number of the centers in w, which is 2m − 1. The point is
that all the following algorithms only require to compute Lpalw[s:i][i− s + 1] for
monotonically increasing positions s and i, with 1 ≤ s ≤ i ≤ m.

Lemma 5. For any string p of length m, βp can be computed in O(m) time.

Proof. Algorithm 2 describes our algorithm. This algorithm is mostly the same as
the linear-time algorithm for computing a standard border array of a string [15],
except that we match the values of Lpal instead of characters.

We firstly compute Pals(p) and Lpalp[1 : m]. This takes O(m) time by The-
orem 1 and Lemma 3. Then we compute βp[1 : m] in ascending order. Consider
the i-th iteration of the for loop of Line 4. Here we have computed βp[1 : i− 1],
and variable j is set to be βp[i−1]. Next we compute Lpalp[i−j:i][j+1] by shifting
the current center c right to AC p(i − j, i). If Lpalp[j + 1] = Lpalp[i−j:i][j + 1],
βp[i] = j + 1. Otherwise, we set j to be βp[j] and check again if Lpalp[j + 1] =
Lpalp[i−j:i][j + 1] or not. The above procedure is repeated until j, such that
Lpalp[j + 1] = Lpalp[i−j:i][j + 1], is found. Note that we break this loop at the
latest when j = 0, since Lpalp[1] = Lpalp[i:i][1] = 1.

In each iteration of the for loop of Line 4, the value of j increases by at most
1. Since each execution of the while loop of Line 5 decreases the value of j at
least 1 and j ≥ 0, the while loop of Line 5 is executed at most m times in total.
Moreover, since the value of c does not decrease and does not exceed the value
of i, the total cost of the while loop of Line 7 is O(m). Therefore Algorithm 2
runs in time linear in m. ut



8 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

Algorithm 3: Algorithm to solve pal-matching problem in linear time.
Input: Text string t of length n and pattern string p of length m.
Output: All positions i of t such that t[i : i + m− 1] pal-matches p.
compute Pals(t), Lpalp[1 : m], and βp[1 : m];1

j ← 0; c← 0;2

for i← 1 to n do3

while true do4

c← max{c, i− j/2}; let (c, r) ∈ Pals(t);5

while c + r < i do /* Shift c to AC t(i− j, i). */6

c← c + 0.5; let (c, r) ∈ Pals(t);7

/* 2(i− c) + 1 = Lpal t[i−j:i][j + 1]. */

if Lpalp[j + 1] = 2(i− c) + 1 then break;8

j ← βp[j];9

j ← j + 1;10

if j = m then11

j ← βp[j]; report i−m + 1;12

Theorem 2. The pal-matching problem (Problem 1) can be solved in O(n + m)
time.

Proof. Algorithm 3 describes our algorithm. This algorithm is a pal-matching
version of the Morris-Pratt algorithm [15].

We firstly compute Pals(p) by Algorithm 1 and Lpalp[1 : m] by Algorithm 2
in O(m) time, and Pals(t) in O(n) time. Consider the i-th iteration of the for
loop of Line 3. Here variable j represents an integer such that p[1 : j] and
t[i − j : i − 1] pal-match. Next we compute Lpal t[i−j:i][j + 1] by shifting the
current center c right to AC t(i − j, i). If Lpalp[j + 1] = Lpal t[i−j:i][j + 1], we
break the while loop of Line 4. Otherwise, we set j to be βp[j] and check again
if Lpalp[j + 1] = Lpal t[i−j:i][j + 1] or not. The above procedure is repeated until
j, such that Lpalp[j + 1] = Lpal t[i−j:i][j + 1], is found. Note that we break this
loop at the latest when j = 0, since Lpalp[1] = Lpal t[i:i][1] = 1. After breaking
the while loop of Line 4, we increment j by 1, and if j becomes m, the algorithm
reports that t[i−m + 1 : i] and p[1 : m] pal-match.

In each iteration of the for loop of Line 3, the value of j increases by at most
1. Since each execution of the while loop of Line 4 decreases the value of j at
least 1 and j ≥ 0, the while loop of Line 4 is executed at most n times in total.
Moreover, since the value of c does not decrease and does not exceed the value
of i, the total cost of the while loop of Line 6 is O(n). Therefore Algorithm 3
runs in O(n + m) time. ut

4 Palindrome Suffix Trees

In this section, we consider an indexing structure for pal-matching. We propose
a new data structure called palindrome suffix trees (pal-suffix trees in short).



Palindrome Pattern Matching 9

t = a b b a b b c b c

Lpal t[1:9][1 : 9] = 1 1 2 4 3 5 1 3 3

Lpal t[2:9][1 : 8] = 1 2 1 3 5 1 3 3

Lpal t[3:9][1 : 7] = 1 1 3 2 1 3 3

Lpal t[4:9][1 : 6] = 1 1 2 1 3 3

Lpal t[5:9][1 : 5] = 1 2 1 3 3

Lpal t[6:9][1 : 4] = 1 1 3 3

Lpal t[7:9][1 : 3] = 1 1 3

Lpal t[8:9][1 : 2] = 1 1

Lpal t[9:9][1 : 1] = 1

1

1

1 4

2 3

3

7

2$

$

$ 2

1

3

3 5
1
3
3

5
1
3
3

33
3

1
3
3

9 8 4 1 3 6 5 2

$

$

$

$

$

$

Fig. 3. Illustration of Pal ST (t) for string t = abbabbcbc. The solid arrows represent
the edges, and the broken arrows do the suffix links. The path from the root to each
leaf s spells out Lpal t[s:9][1 : s]$.

The pal-suffix tree of a string t, denoted Pal ST (t), is a compacted trie which
represents Lpal t[s:n][1 : n − s + 1] for all the suffixes t[s : n] of t, where n is
the length of t and 1 ≤ s ≤ n. Each internal node of Pal ST (t) has at least
two children, and the labels of two distinct out-going edges of each internal
node must start with distinct non-negative integers. Moreover, for Pal ST (t) to
have exactly n leaves, we use the following convention: Each leaf of Pal ST (t) is
uniquely labeled with integer s (1 ≤ s ≤ n) in such a way that the path from the
root to leaf s spells out Lpal t[s:n][1 : n− s+1]$, where $ is a special end-marker.
The length of a node v, denoted len(v), is the length of Lpal represented by v.
Fig. 3 illustrates Pal ST (abbabbcbc).

Notice that there are O(n) distinct values for the elements of Lpal t[1 : n].
For instance, consider t = (ab)

n
2 . Then Lpal t[1 : n] = 1 1 3 3 · · ·n−1 n−1. This

suggests that an internal node of Pal ST (t) might have O(n) children. However,
the following lemma holds.

Lemma 6. For any string t, each node of Pal ST (t) has at most σ children,
where σ is the alphabet size.

Proof. For any string w, let S (w) = SPals(w) ∪ {(|w| + 0.5, 0)} − {(|w|/2 +
0.5, |w|/2)}. To show the lemma, we consider the following claim.

Claim. Let w and z be any strings of length i s.t. Pals(w) = Pals(z). For any
integers j, k with 1 ≤ j ≤ i, 1 ≤ k ≤ i and ( i+j+1

2 , i−j
2 ), ( i+k+1

2 , i−k
2 ) ∈ S (w), if

w[j] = w[k] then z[j] = z[k].



10 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

w
ij k

i+j+1
2

i+k+1
2

a

a

a a

Fig. 4. Illustration for the proof of Claim in Lemma 6.

Proof of Claim. When j = k, it is clear the claim holds. Then we consider the
case j 6= k. Assume w.l.o.g. that j < k. Since w[j +1 : i+j−k] = wR[k+1 : i] =
w[k + 1 : i] = wR[j + 1 : i + j − k], w[j + 1 : i + j − k] is a palindrome. It follows
from w[j] = w[k] and w[j+1 : i] = wR[j+1 : i] that w[j] = w[k] = w[i+j+1−k].
Putting w[j + 1 : i + j − k] = wR[j + 1 : i + j − k] and w[j] = w[i + j + 1 − k]
together, we get w[j : i + j + 1 − k] is a palindrome (See also Fig. 4). Since
Pals(w) = Pals(z), z[j : i + j + 1− k] and z[j + 1 : i] are palindromes, and thus
z[j] = z[i + j + 1− k] = z[k]. Hence the claim holds.

Consider any substring w of length i of t. We introduce an equivalence relation
on S (w) such that

(
i + j + 1

2
,
i− j

2
) ≡ (

i + k + 1
2

,
i− k

2
) ⇐⇒ w[j] = w[k],

where 1 ≤ j ≤ i, 1 ≤ k ≤ i, and ( i+j+1
2 , i−j

2 ), ( i+k+1
2 , i−k

2 ) ∈ S (w). By definition,
there are at most σ equivalence classes w.r.t. ≡. Consider any substring z of t
with Pals(z) = Pals(w). Due to the above claim, the equivalence classes on S (z)
are identical to those on S (w).

Let v be any node of Pal ST (t), and assume that the path from the root
to v spells out Lpalw. Note that every substring z of t that pal-matches w is
represented by the same node v in Pal ST (t), since it has the same Lpal values
as w, i.e., Lpalw = Lpalz. Therefore, the number of children of v is at most d+1,
where d is the number of equivalence classes on S (w), which is bounded by σ.
Hence the lemma holds. ut

In order to implement Pal ST (t) with O(n) space, we encode the label of
each edge as follows. Assume that there is an edge of Pal ST (t) labeled with x,
where x is a sequence of positive integers. We encode x by a triple (x[1], q, |x|),
where x[1] is the first element of x, q is a position of text t such that x =
Lpal t[s:n][q−s+1 : q−s+|x|] for some 1 ≤ s ≤ n, and |x| is the length of the edge
label. See Fig. 3 and focus on the edge which is labeled with 2 1 3. Choosing s = 2,
the label is encoded by (2, 3, 3) as q = 3, |x| = 3, and Lpal t[2:9][2 : 4] = 2 1 3. In
Fig. 3, the first element of each edge label is shown underlined.

Theorem 3. Provided that Pal ST (t) and Pals(t) are already computed, the
pal-matching problem (Problem 1) can be solved in O(m log σ + r) time, where r
is the output size.



Palindrome Pattern Matching 11

Proof. We compute Lpalp using Algorithm 1 in O(m) time. Then we search
Pal ST (t) for Lpalp[1 : m]. Assume that Lpalp[1 : j] matches the label of an out-
going edge of the root node of Pal ST (t), with some 1 ≤ j < m. Assume the edge
label is encoded as (Lpal t[q:n][1], q, j), where Lpal t[q:n][1 : j] = Lpalp[1 : j]. Let v
be the node that represents Lpal t[q:n][1 : j]. Assume that there is an out-going
edge of v, which is labeled with (Lpal t[q′−j:n][j+1], q′, j′), where Lpal t[q′−j:n][j+
1] = Lpalp[j+1] and j′ ≥ 2. This edge can be found in O(log σ) time by Lemma 6.
Now we have to check whether Lpal t[q′−j:n][j + 2] = Lpalp[j + 2]. Although q′ is
not necessarily equal to q+j, we can compute Lpal t[q′−j:n][j+2] as follows: By the
definition of Pal ST (t) it holds that Lpal t[q′−j:n][1 : j + 1] = Lpal t[q:n][1 : j + 1],
which implies that AC t(q′− j, q′) = AC t(q, q + j) + q′− (q + j). As described in
Section 3, we can compute Lpal t[q′−j:n][j +2] by shifting the current center from
AC t(q′− j, q′) to AC t(q′− j, q′+1). Moreover, Lpal t[q′−j:n][j +2] = Lpalp[j +2]
iff AC t(q′− j, q′+1)−AC t(q′− j, q′) = AC p(1, j +2)−AC p(1, j +1). In light of
this, the total cost for computing such values of Lpal is bounded by the cost for
computing Lpalp, which is O(m). We continue the above procedure until either
we find Lpalp in Pal ST (t) or we find a mismatch. This takes O(m log σ) time.
If Lpalp is found, then we traverse the sub-tree rooted at the (possibly implicit)
node that represents Lpalp, and report the id of the leaves in the sub-tree, in
O(r) time. ut

4.1 Constructing Palindrome Suffix Trees

We employ Ukkonen’s on-line construction techniques for suffix trees [17]. Here
let us briefly review the behavior of the Ukkonen’s algorithm. The algorithm
processes the characters of a given string t of length n in ascending order. After
processing the (i− 1)-th character of t, the algorithm has constructed the suffix
tree of t[1 : i − 1]. Now the algorithm waits for the next i-th character on the
location which represents the longest suffix t[s : i−1] of t[1 : i−1] that matches a
substring of t[1 : i−2], with some 2 ≤ s ≤ i. Let us call this location on the path
the active point for i−1. Next the algorithm obtains the i-th character t[i]. If we
can transit from the active point for i− 1 with t[i], then the active point for i is
the location that represents t[s : i]. Otherwise, the algorithm creates a new edge
from the active point for i−1 leading to a new leaf node, with edge label t[i : n].
After that, the algorithm finds the location which represents t[s + 1 : i − 1] by
using a suffix link, in amortized constant time. The above procedure is repeated
until the active point for i is found. Readers are referred to [17] for more details
of the Ukkonen algorithm.

In the sequel, we show main technical issues of our algorithm to construct
Pal ST (t).

Suffix Links. Let v be any node of Pal ST (t), and assume that the path from
the root to v spells out Lpalw for some substring w of t. The suffix link of node
v is an auxiliary edge from node v to node u, such that the path from the root
to u spells out Lpalw[2:|w|]. For example, see Fig. 3, and focus on the node which



12 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

s-1

v

u

u'

q

{l {l

s

y

Fig. 5. Illustration of maintenance of the active point. u is the active point for i − 1,
and y is a candidate for the active point for i.

represents 1 2 1 3. The suffix link of this node points to the node which represents
1 1 3. This is because there exists a substring bbab with Lpalbbab = 1 2 1 3, and
Lpalbab = 1 1 3.

Unlike the case of suffix trees, the node u, which is to be pointed by the suffix
link of some node v, is not always explicit in Pal ST (t). For example, see Fig 3.
The suffix link of the node which represents 1 1 2 is illustrated to point to the
implicit node which represents 1 2. In such a case, we set the suffix link of node
v to the child node u′ of implicit node u, and record the length of the partial
edge label from u to u′. This way we can access from node v to the location
for u in constant time. In the above example, the suffix link of node 1 1 2 is
implemented to point to node 1 2 1 3, with auxiliary value 2 which is the length
of the partial label from implicit node 1 2 to node 1 2 1 3. The same technique
was used in [3] to implement the suffix links of parameterized suffix trees.

Maintaining Active Point. Assume that we have constructed Pal ST (t[1 :
i − 1]) for given string t, for some 1 ≤ i ≤ n. Assume that the active point for
i− 1 is on an implicit node u. Let v be the explicit parent node of u, and let u′

be the explicit child node of v, i.e., u is on the edge from v to u′. Let x be the
label of the edge from v to u′, and let ` be the length of the partial edge label
from v to u. Then, the active point for i− 1, the implicit node u, is represented
by (v, x[1], s − 1 + len(v), `), where x[1] is the first element of x and s − 1 is a
position of t such that Lpal t[s−1:n][len(v) + 1 : len(v) + `] = x[1 : `].

Similarly to construction of suffix trees, we look for the active point for i
from the active point for i− 1, i.e., the implicit node u. See Fig. 5. In so doing,
we use the suffix link of node v. Consider any leaf s − 1 in the subtree rooted



Palindrome Pattern Matching 13

at v. Let q be the node we have reached by the suffix link of node v. Now
we want to look for a (possibly implicit) child y of q such that the subtree
rooted at y has leaf s and len(y) = len(u) − 1 = len(q) + `. The difficulty we
face is that x[1 : `] = Lpal t[s−1:n][len(v) + 1 : len(v) + `] may not be equal to
Lpal t[s:n][len(q) + 1 : len(q) + `]. This happens when there exists an integer k,
len(v)+1 ≤ k ≤ len(v)+`, such that Lpal t[s−1:n][k] = k. For example, see Fig 3.
The edge leading to leaf 2 is labeled with 5 1 3 3 $, while the edge leading to
leaf 3 is labeled with 2 1 3 3 $. This is because Lpal t[2:9][5] = 5.

Nevertheless, we can efficiently locate y starting from q, as follows. Since
x[1] = Lpal t[s−1:n][len(v) + 1], we can calculate AC t(s − 1, s − 1 + len(v)) in
constant time. Since len(q) = len(v)− 1, we can compute Lpal t[s:n][len(q) + 1 :
len(q)+`] in O(AC t(s, s+ len(q))−AC t(s−1, s+ len(q))+`) time, as described
in Section 3. Then we can find y in O(` log σ) time, since there can be at most
` − 1 explicit nodes in the path from q to y. We check whether y is the active
point for i or not, and if not, we repeat the above procedure until the active
point for i is found. The total cost of the above operations, after constructing
Pal ST (t), is O(n log σ).

Consequently, we obtain the following result.

Theorem 4. For any string t of length n, Pal ST (t) can be constructed in
O(n log σ) time, where σ is the alphabet size.

5 Conclusions and Future Work

Palindromes in strings have widely been studied both in theoretical and practical
contexts, such as in word combinatorics and in bioinformatics. In this paper, we
presented linear-time algorithms to solve a new problem called the palindrome
pattern matching problem. The first algorithm is a Morris-Pratt type algorithm,
and the second one is a suffix-tree type algorithm.

In practical applications such as DNA and RNA sequence analysis, it is
desired to cope with gapped palindromes which have a spacer between the left
and right arms of the palindromes. Several versions of gapped palindromes have
been introduced and studied [9, 12, 10]. Our future work includes development
of efficient solutions to a gapped-palindromes version of the palindrome pattern
matching problem.

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)

2. Anisiu, M.C., Anisiu, V., Kása, Z.: Total palindrome complexity of finite words.
Discrete Mathematics 310(1), 109–114 (2010)

3. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52(1), 28–42 (1996)



14 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda

4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity
of infinite words. International Journal of Foundations of Computer Science 15(2),
293–306 (2004)

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. rep., DIGITAL System Research Center (1994)

6. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)

7. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European
Journal of Combinatorics 30(2), 510–531 (2009)

8. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in
linear time. Information Processing Letters 110(20), 908–912 (2010)

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York (1997)

10. Hsu, P.H., Chen, K.Y., Chao, K.M.: Finding all approximate gapped palindromes.
In: Proc. ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093 (2009)

11. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palin-
dromes. In: Proc. SPIRE 2010. LNCS, vol. 6393, pp. 135–146 (2010)

12. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Com-
puter Science 410(51), 5365–5373 (2009)

13. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)

14. Massé, A.B., Brlek, S., Frosini, A., Labbé, S., Rinaldi, S.: Reconstructing words
from a fixed palindromic length sequence. In: Proc. TCS 2008. IFIP, vol. 273, pp.
101–114 (2008)

15. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Tech. Rep. 40,
University of California, Berkeley (1970)

16. Restivo, A., Rosone, G.: Burrows-Wheeler transform and palindromic richness.
Theoretical Computer Science 410(30–32), 3018–3026 (2009)

17. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)


