
General Algorithms for Mining Closed Flexible
Patterns under Various Equivalence Relations

Tomohiro I, Yuki Enokuma, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Fukuoka 819-0395, Japan
{tomohiro.i, bannai, takeda}@inf.kyushu-u.ac.jp

yuki.enokuma@i.kyushu-u.ac.jp

Abstract. We address the closed pattern discovery problem in sequen-
tial databases for the class of flexible patterns. We propose two tech-
niques of coarsening existing equivalence relations on the set of patterns
to obtain new equivalence relations. Our new algorithm GenCloFlex is
a generalization of MaxFlex proposed by Arimura and Uno (2007) that
was designed for a particular equivalence relation. GenCloFlex can cope
with existing, as well as new equivalence relations, and we investigate
the computational complexities of the algorithm for respective equiva-
lence relations. Then, we present an improved algorithm GenCloFlex+
based on new pruning techniques, which improve the delay time per out-
put for some of the equivalence relations. By computational experiments
on synthetic data, we show that most of the redundancies in the mined
patterns are removed using the proposed equivalence relations.

1 Introduction

Discovering frequent patterns in sequence databases has great importance in a
wide-range of areas, including analysis of customer purchasing histories, Web
click streams, DNA/RNA sequences, natural language texts, and so on. Recent
decades have seen the series of studies; Agrawal and Srikant [1] was one of the
pioneering works on sequential pattern mining, and many studies followed [3,11,
14].

In practical applications of pattern mining, a typical tradeoff to be considered
is: On one hand, we would like to consider for the mining task, a rich set of
patterns and a relatively low minimum support threshold so that we may discover
interesting, possibly subtle information buried in the data. On the other hand,
by choosing such a search space, a mining algorithm may give us a tremendous
number of patterns as output, which will definitely be a bottle neck when the
results are examined by domain experts. To deal with this problem, an important
technique in reducing the number of patterns output without sacrificing their
diversity, is to introduce an appropriate equivalence relation ≡ on the pattern
set Π, and to output only closed patterns, where a pattern P is closed if it is
maximal in the equivalence class [P]≡ to which P belongs under ≡. This problem
is referred to as closed pattern discovery and has been studied extensively [2,5–
8,10,12,13,15,16,19–21].

In this paper, we consider the closed pattern discovery problem for the class
of flexible patterns. The main features of our work are: (1) We focus on the class
of flexible patterns. (2) We employ occurrence-based equivalence relations. (3)
We propose two techniques of coarsening existing equivalence relations. (4) We
develop a general algorithm GenCloFlex to handle several equivalence relations,
and an improved algorithm GenCloFlex+. The algorithms have polynomial delay
time and space guarantees.

(1) Mining flexible patterns: A flexible pattern is of the form "w1 "
· · · " wk" where w1, . . . , wk (k ≥ 1) are constant strings and " is a gap symbol
that can match any string of any length. Most studies to date target the class
of subsequence patterns [1, 3, 5–16, 20, 21]. A subsequence pattern is a special
case of flexible patterns, having the form "a1 " · · · " ak" (k ≥ 1) where each
ai (1 ≤ i ≤ k) must be a single character. Thus, flexible patterns are more
descriptive and enable us to capture some features that may not be discovered
by subsequence patterns. For example, suppose we obtained "l " o " v " e" as
an output of frequent subsequence pattern mining. Since the lengths of gaps
between each character is not considered, the pattern does not distinguish its
occurrences in texts “love” and “low velocity”, and we cannot know from
the pattern alone, whether the phrase “love” is actually frequent or not. An
output of frequent flexible pattern mining may give us the phrase “"love"” or
“"lo " ve"” in which case this information would be apparent. Thus mining
flexible patterns would be appreciated especially for languages which do not
have an explicit delimiter between words such as Japanese and Chinese. Also,
the information of consecutive characters in a pattern connected without gaps
is very important for bio-sequences [18]. To the best of our knowledge, mining
of closed flexible patterns with this definition has only been considered in [2]. A
different version of closed flexible patterns is proposed in [19], but the definitions
are significantly different and incompatible with ours.

(2) Occurrence-based equivalence relations: The definition of closed
patterns depends on which equivalence relation to use, that is, which patterns we
regard as the same. An equivalence relation is finer if less patterns are considered
to be the same: i.e. more attention is paid to differences. An equivalence relation
is coarser if more patterns are considered to be the same: i.e. less attention is
paid to differences.

Most of the existing research on closed pattern mining traditionally use the
equivalence relation on Π which is based on the document occurrence. Namely,
two patterns are equivalent if the sets of strings in sequential database S contain-
ing occurrences of the patterns are identical. If a string T in database S contains
an occurrence of P , we regard it as just one occurrence even if it contains two
or more occurrences of P . For example, consider the occurrences of patterns
P1 = "a " b " cd" and P2 = "a " cd" in string T =a...b..cd...a...cd...., where
“.” denotes any symbol other than a, b, c. We note that P1 is a super-pattern of
P2 and therefore every occurrence of P1 implies an occurrence of P2, indepen-
dently of strings in sequential database S. Suppose that every other string in
S containing P2 has an occurrence of P1. Then the document-occurrence-based

2

equivalence relation regards P1 and P2 equivalent. In this case, however, note
that the rightmost occurrence of P2 is not accompanied by an occurrence of
P1. In other words, if we consider the minimal occurrence intervals of the re-
spective patterns, P1 occurs twice while P2 occurs only once within T . In some
applications, we would like to distinguish between patterns which have different
occurrences in such a way. In this paper we pay attention to respective occur-
rences of patterns, and use occurrence-based equivalence relations.

Arimura and Uno [2] defined their equivalence relation
B≡S on pattern set Π

based on the equality on the sets of beginning positions of pattern occurrences.
For example, consider the occurrences of P = "a " b" in T1 = ...a.b...a...b..a....
The occurrence positions of P are the two occurrence positions of “a”, excluding
the rightmost one. However, we have four occurrence positions of P in T2 =
...a...a...a...a...b... while we have only one occurrence position of P in T3 =
...a...b...b...b...b.... Such a non-symmetric feature is usually not desirable.

Mannila et al. [9] defined their equivalence relation
M≡S on the subsequence

pattern set based on the minimal intervals within which patterns occur. In the
previous example, the pattern P has only one occurrence in respective strings.
In this paper we consider the closed pattern discovery problem mainly under

M≡S

extended to the flexible pattern set and its coarsened variants
MX≡S and

MXG≡ S .
It should be emphasized that occurrence-based equivalence relations such as

B≡S and
M≡S are finer than the document-occurrence-based equivalence relation.

This means that using such equivalence relations may increase the number of
mined closed patterns. Thus it is important to coarsen the equivalence relations.

On the other hand, the goodness of an equivalence relation may vary depend-
ing on the nature of the data, the application domain and the goal of pattern
mining. For this reason, it is desirable to develop a general, efficient closed pat-
tern mining algorithm for various equivalence relations.

(3) Definition of support: Note that the choice of equivalence relation
does not imply a particular definition for the frequency, or support, of a pattern.
There are several definitions of support of a pattern P in a sequential database S.
One definition is the so-called document frequency, which is the number of strings
in S that contain at least one occurrence of P . A lot of work on closed pattern
mining employ this definition. Another definition is the sum of the numbers of
minimal intervals in respective strings in S that contain at least one occurrence
of P . This definition has been used, for example, in [9] and [22]. Yet another
definition can be found in [9], which is the number of windows of a given width
in respective strings in S that contain at least one occurrence of P .

Throughout this paper we assume the document frequency. However, our
algorithms can be easily modified to cope with the other definitions above when
the underlying equivalence relation is in the M family (

M≡S ,
MX≡S and

MXG≡ S).
(4) Polynomial delay time and space: Even in closed frequent pattern

mining, the size of the output can be exponentially large, and we cannot hope
for an algorithm running in polynomial time with respect to the input size. On
the other hand, an enumeration algorithm with polynomial delay time, is an

3

algorithm in which the time between each consecutive output is bounded by a
polynomial with respect to the size of the input. Such characteristics can be
very useful and important for mining algorithms, since it guarantees that the
algorithm runs in polynomial time with respect to the size of the output. This
means that the time complexity of the algorithm is small when the output size,
i.e., the number of closed frequent patterns is small. Even when the output size
is large, we can still expect that the next output can be received in a reasonable
amount of time. Without this guarantee, we may find out – after waiting for a
very long time – that there are no more frequent patterns to be discovered.

Space complexity of the mining algorithm is also clearly an important issue.
Arimura and Uno [2] addressed the closed pattern discovery problem for the class
of flexible patterns and presented the first algorithm MaxFlex with polynomial
time delay and polynomial space. Our algorithms also achieve polynomial time
delay and polynomial space.

For closed pattern mining under document-based equivalence relations, algo-
rithms such as BIDE [16,17], proposed for subsequence patterns, seem to achieve
polynomial space complexity. However, as far as we know, no time delay guar-
antees have been shown, which may be a consequence of the document-based
equivalence relation.

Contributions of this paper: We reiterate the main contributions of this
paper: For the frequent closed flexible pattern enumeration problem, we focus
on the equivalence relation

M≡S of [9], and extended it to the class of flexible
patterns. We also propose two new equivalence relations by coarsening it. We
show GenCloFlex, an algorithm which generalizes the algorithm MaxFlex [2], so
that it can cope with existing, as well as new equivalence relations, and investi-
gate its computational complexities for respective equivalence relations. Then we
present an improved algorithm GenCloFlex+, based on new pruning techniques
which improve the delay time per output for some of the equivalence relations.
By computational experiments on synthetic data, we prove that the proposed
equivalence relations drastically remove redundancies in the mined patterns.

2 Preliminaries

Let Σ be a non-empty, finite set of symbols. A string over Σ is a finite sequence
of symbols from Σ. Let Σ∗ denote the set of strings over Σ. Strings x, y and
z are said to be a prefix, substring and suffix of string w = xyz. The length of
a string w is the number of symbols in w and denoted by |w|. The string of
length 0 is called the empty string and denoted by ε. Let Σ+ = Σ∗ − {ε}. The
i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|. The substring of a
string w that begins at position i and ends at position j is denoted by w[i..j] for
1 ≤ i ≤ j ≤ |w|. That is, w[i..j] = w[i] · · ·w[j]. For convenience, let w[i..j] = ε
for j < i. The reversal wrev of a string w = w[1..n] is defined to be w[n] · · ·w[1].
For a finite set S of strings, let ‖S‖ denote the total length of strings in S and
let Srev = {wrev | w ∈ S}.

4

An interval is an ordered pair [i, j] of integers with i ≤ j which represents
the set of integers k with i ≤ k ≤ j. Let I be a set of intervals. Let Beg(I) = {i |
[i, j] ∈ I} and End(I) = {j | [i, j] ∈ I}, and let Min(I) denote the set of intervals
in I which are minimal w.r.t. ⊆. For any set I of intervals and for any integers
h, k, let I ⊕ 〈h, k〉 =

{
[i + h, j + k]

∣∣ [i, j] ∈ I
}
. Also, for any set J of integers

and for any integer k, let J ⊕ k =
{
j + k

∣∣ j ∈ J
}
.

2.1 Equivalence relation

Let A be a set. A binary relation on A is a subset of A×A. For binary relations
R1, R2 on A, let R1R2 = {〈a, c〉 | 〈a, b〉 ∈ R1 ∧ 〈b, c〉 ∈ R2}. Let IA = {〈a, a〉 |
a ∈ A}. For a binary relation R on A, let R0 = IA and Rn = RRn−1 (n > 0),
and let R−1 = {〈b, a〉 | 〈a, b〉 ∈ R}, R+ =

⋃∞
n=1 Rn and R∗ =

⋃∞
n=0 Rn.

A binary relation R on A is said to be reflexive if IA ⊆ R; symmetric if
R−1 ⊆ R; and transitive if R+ ⊆ R. An equivalence relation on A is a binary
relation on A which is reflexive, symmetric and transitive. For a binary relation
R, we often write aRb when 〈a, b〉 ∈ R.

Let ≡ be an equivalence relation on A. The equivalence class of an element
x of A under ≡ is {y ∈ A | x ≡ y} and denoted by [x]≡. An equivalence relation
≡ on A is said to be finer than another equivalence relation ≡′ on A if ≡⊆≡′.
For any set R = {≡i| i ∈ Λ} of equivalence relations on A, let ∧R =

⋂
i∈Λ ≡i

and ∨R =
(⋃

i∈Λ ≡i

)+. The equivalence closure of a binary relation R on A,
denoted by EC(R), is the smallest superset of R that is an equivalence relation
on A. For any binary relation R on A, it is known that EC(R) = (R ∪ R−1)∗.

2.2 Pattern and embedding

Let " be a special symbol not in Σ, called the gap. A pattern is of the form
"w1". . ."wk" where k ≥ 1 and w1, . . . , wk ∈ Σ+. Let Π be the set of patterns, and
let Π0 be the set of strings over Σ∪{"} where the "’s do not occur consecutively.
We note that Π ⊂ Π0. The size of a pattern P , denoted by size(P), is the number
of symbols in P other than ". The reversal of a pattern P , denoted by P rev, is
defined in the same way as in the string case. The degree of a pattern P is the
number of occurrences of " in P and denoted by deg(P).

For example, let Σ = {a, b, c}. P = "ab " a " cb" is a flexible pattern.
size(P) = 5, deg(P) = 4 and P rev = "bc " a " ba".

A substitution of degree d is a d-tuple 〈π1, . . . , πd〉 such that π1, . . . , πd ∈
Π0. A substitution 〈π1, . . . ,πd〉 is said to be ground if π1, . . . , πd ∈ Σ∗. For
any pattern P ∈ Π and a substitution θ = 〈π1, . . . ,πd〉 with d = deg(P), the
application of θ to P , denoted by Pθ, is the pattern obtained by replacing the
i-th occurrence of " in P with πi for every i = 1, . . . , d. For any i = 1, . . . , d,
let Θi

d be the set of substitutions θ = 〈π1, . . . , πd〉 such that (1) πi 0= " and (2)
πj = " for every j with 1 ≤ j ≤ d and j 0= i. Let Θd =

⋃d
i=1 Θi

d. A substitution
〈", . . . , ",π, ", . . . , "〉 ∈ Θi

d is said to be primitive if π ∈ {ε} ∪ {"a" | a ∈ Σ}.
A primitive substitution 〈", . . . , ", π, ", . . . , "〉 is said to be erasing if π = ε, and

5

non-erasing if π = "a" for some a ∈ Σ. For any P,Q ∈ Π, Q is said to be a
right-extension of P if there exists a substitution θ ∈ Θd

d such that Q = Pθ,
where d = deg(P).

An embedding of P ∈ Π0 into Q ∈ Π0 is a substitution θ such that Pθ = Q.

Definition 1. P !Q
def⇐⇒ there is an embedding of P into Q that is primitive.

Let !∗ be a partial-order on Π0 s.t. P !∗ Q ⇐⇒ there is an embedding of P
into Q. For any P ∈ Π and T ∈ Σ+, P is said to occur in T if P !+ T .

For example, "ab " a " c " ! " ab " d " a " c" due to a non-erasing primitive
〈", "d", ", "〉 ∈ Θ4, "ab"a"c"!"ab"ac" due to an erasing primitive 〈", ", ε, "〉 ∈
Θ4, and "ab " a " c " !∗ " ab " d " ac" due to a substitution 〈", "d", ε, "〉.

For an equivalence relation ≡ on Π, a pattern P ∈ Π is said to be closed
under ≡ if it is maximal in [P]≡ w.r.t. !∗.

2.3 Existing equivalence relations on Π

Let S be a finite subset of Σ+. Intuitively, equivalence relations on Π are de-
signed so that P and Q are equivalent if: Every time P occurs in S, Q also occurs
at the same location. Difference between equivalence relations comes from the
difference in definitions of same location here. Below, we describe several existing
equivalence relations on Π.

An occurrence interval of a pattern P ∈ Π in T ∈ Σ+ is an interval [|w1| +
1, |T |− |wd|] such that there is a ground embedding θ = 〈w1, . . . , wd〉 of P into
T . Let IntT (P) be the set of all occurrence intervals of P in T . We give the
definitions of four existing equivalence relations. Let S be a finite subset of Σ+.

Definition 2 (
I≡S ,

M≡S ,
B≡S ,

E≡S). For any patterns P, Q ∈ Π, let

P
I≡S Q

def⇐⇒ ∀T ∈ S, IntT (P) = IntT (Q),

P
M≡S Q

def⇐⇒ ∀T ∈ S, Min(IntT (P)) = Min(IntT (Q)),

P
B≡S Q

def⇐⇒ ∀T ∈ S, Beg(IntT (P)) = Beg(IntT (Q)),

P
E≡S Q

def⇐⇒ ∀T ∈ S, End(IntT (P)) = End(IntT (Q)).

The algorithm MaxFlex [2] enumerates all closed flexible patterns in polyno-
mial space and linear-time delay under

B≡S .
B≡S ,

E≡S and
B≡S ∨ E≡S are natural

extensions of the well-known equivalence relations introduced by Blumer et al. [4]
for the class of substring patterns, which are recognized as the basis of index
structures for text data, e.g., the suffix trees (

B≡S), the DAWGs (
E≡S), and the

compact DAWGs (
B≡S ∨ E≡S).

M≡S is an extension of the equivalence relation
introduced by Mannila et al. [9] for the class of subsequence patterns.

Equivalence relation function: We note that the equivalence relations
above vary depending on S. An equivalence relation (ER) function is a function
that maps finite subsets S of Σ+ to equivalence relations ≡S on Π. The reversal
of an ER function Φ is defined by: 〈P, Q〉 ∈ Φrev(S) ⇐⇒ 〈P rev, Qrev〉 ∈ Φ(Srev).

6

We say that an ER function Φ is symmetric if Φrev(S) = Φ(S) for every S. The
ER functions for

I≡S ,
M≡S ,

B≡S ∨ E≡S and
B≡S ∧ E≡S are symmetric, while the reversal

of the ER function for
B≡S is the ER function for

E≡S , and vice versa.
Monotonicity of equivalence relations on Π: An equivalence relation

≡ on Π is said to be monotone if !+∩≡ = (!∩≡)+. If ≡ is monotone, then
P1 !+ P2 and P1 ≡ P2 implies that ∀Q ∈ Π, (P1 !∗ Q!∗ P2 =⇒ P1 ≡ Q ≡ P2).
Monotonicity of equivalence relations is a very helpful property for closedness
check of a pattern, i.e., for any monotone equivalence relation ≡, a pattern P is
closed iff there is no primitive substitution θ such that Pθ ≡ P . We will discuss
general and efficient algorithms based on monotonicity in Section 4. We remark
that

I≡S ,
M≡S ,

B≡S and
E≡S are monotone.

3 Coarsening Existing Equivalence Relations

Since we prefer symmetric equivalence relations, we focus on
M≡S that is sym-

metric. It is, however, still too fine and we want a coarser one. In this section,
we define two new equivalence relations

MX≡S and
MXG≡ S by coarsening

M≡S . With
one of the techniques, we also coarsen the other equivalence relations

I≡S ,
B≡S

and
E≡S . and introduce

IX≡S ,
BX≡S and

EX≡S .
For any pattern P = "w1 " · · · " wk" ∈ Π, let P = w1 " · · · " wk, and thus

P = "P". One technique of coarsening
M≡S is to extend as long as possible the

constant strings at pattern ends to the outward without decreasing occurrences.
Here we remark that the next proposition does hold.

Proposition 1. For any P ∈ Π and any substitution θ ∈ (Θ1
d ∪ Θd

d) with d =
deg(P), |Min(IntT (P))| ≥ |Min(IntT (Pθ))| for every T ∈ S.

Definition 3. P !MX
S Q

def⇐⇒ there exists a ∈ Σ such that

– Q = "Pa" and Min(IntT (Q)) = Min(IntT (P)) ⊕ 〈0, 1〉 for every T ∈ S; or
– Q = "aP" and Min(IntT (Q)) = Min(IntT (P)) ⊕ 〈−1, 0〉 for every T ∈ S.

Definition 4 (
MX≡S). Let

MX≡S = EC(
M≡S ∪!MX

S).

Proposition 2. For any P ∈ Π, there uniquely exists a pair of strings u, v ∈ Σ∗

such that Q = "uPv" is closed under
MX≡S and P

MX≡S Q.

Take an example S which consists of a single string T1 = acbmdcacbndcaca,
and a pattern P = "b " d". There are two minimal occurrences of P in T1, and
we see they are preceded by “ac” and followed by “cac” without gap. Thus for
any combinations of a suffix u of “ac” and a prefix v of “cac”, uPv ("cb"dcac"

for example) is equivalent to P under
MX≡S .

Another technique of coarsening
M≡S is to add pattern fragments including

gaps to the pattern ends without decreasing occurrences.

7

Definition 5. P !MXG
S Q

def⇐⇒ Q ∈ {"a " P", "P " a"} with some a ∈ Σ and
|Min(IntT (P))| = |Min(IntT (Q))| for every T ∈ S.

Definition 6 (
MXG≡ S). Let

MXG≡ S = EC(
M≡S ∪!MXG

S).

Take an example S which consists of a single string T1 = acbmdcagcbnddcaca,
and a pattern P = "b " d". The number of minimal occurrences of P in T1 is 2.
There are several patterns that are equivalent to P under

MXG≡ S , but not under
M≡S and

MX≡S , such as "P " c", "a " cP " ca " c " a" and "a " cP " d". Note that
Q = "P "d"c" is not equivalent to P under

MXG≡ S because the number of minimal
occurrences of Q is 1.

We can prove that
MX≡S and

MXG≡ S are monotone from Proposition 1. Also, the
ER functions for

MX≡S and
MXG≡ S are symmetric. It follows from Definitions 4 and

6 that the next inclusion relation holds.

Theorem 1.
M≡S ⊆ MX≡S ⊆ MXG≡ S.

The technique used in defining
MX≡S extends

I≡S ,
B≡S and

E≡S as below.

Definition 7. P !IX
S Q

def⇐⇒ there exists a ∈ Σ such that
– Q = "Pa" and IntT (Q) = IntT (P) ⊕ 〈0, 1〉 for every T ∈ S; or
– Q = "aP" and IntT (Q) = IntT (P) ⊕ 〈−1, 0〉 for every T ∈ S.

Definition 8. P !BX
S Q

def⇐⇒ there exists a ∈ Σ such that Q = "aP" and
Beg(IntT (Q)) = Beg(IntT (P)) ⊕ (−1) for every T ∈ S.

Definition 9. P !EX
S Q

def⇐⇒ there exists a ∈ Σ such that Q = "Pa" and
End(IntT (Q)) = End(IntT (P)) ⊕ 1 for every T ∈ S.

Definition 10 (
IX≡S,

BX≡S,
EX≡S). Let

IX≡S= EC(
I≡S ∪!IX

S),
BX≡S= EC(

B≡S ∪!BX
S) and

EX≡S= EC(
E≡S ∪!EX

S).

We note that
IX≡S ,

BX≡S ,
EX≡S are not monotone.

4 Algorithms for Enumerating Frequent Closed Patterns

Let FreqS(P) denote the number of strings in S in which P occurs.
Problem 1 (FreqCloPatEnum w.r.t. ≡). Given a finite subset S of Σ+ and
a non-negative integer σ, enumerate all the patterns P closed under ≡ without
duplicates such that FreqS(P) ≥ σ.

Theorem 2 (MaxFlex [2]). For a finite alphabet Σ, there exists an algorithm
that solves FreqCloPatEnum w.r.t.

B≡S in O(|Σ|‖S‖) time delay and O(‖S‖d)
space, where d is the maximum number of gaps in the output patterns.

In this section, we consider methods for efficiently solving the problem for the
M family (

M≡S ,
MX≡S ,

MXG≡ S), the I family (
I≡S ,

IX≡S), and the E family (
E≡S ,

EX≡S). In
the sequel, we exclude the descriptions for the B family (

B≡S ,
BX≡S), since they are

simply the reversal of the E family.

8

4.1 Outline of GenCloFlex

A pattern P ∈ Π is said to be i-th-gap-closed under ≡ if P 0≡ Pθ for every
θ ∈ Θi

d, where 1 ≤ i ≤ d and d = deg(P). For convenience, we say that P is
leftmost-gap-closed for i = 1 and rightmost-gap-closed for i = deg(P). A pattern
P ∈ Π is said to be inner-gap-closed if it is i-th-gap-closed under ≡ for every i
with 1 < i < deg(P).

An equivalence relation ≡ on Π is said to be rightmost-gap-independent if
any P ∈ Π satisfies the following condition: For every i with 1 ≤ i < deg(P),
if P is not i-th-gap-closed under ≡, then every right-extension P ′ of P is not
i-th-gap-closed under ≡. We remark that the M, I and E families are rightmost-
gap-independent.

As a generalization of MaxFlex [2], we describe GenCloFlex, an algorithm for
solving FreqCloPatEnum w.r.t. any equivalence relation that is rightmost-
gap-independent. We define a rooted search-tree ST over Π ∪ {⊥} by:

– For any a ∈ Σ, the parent of "a" is ⊥.
– For any a ∈ Σ and for any w1, . . . , wk ∈ Σ+, the parent of "w1 " · · · " wka"

and "w1 " · · · " wk " a" is "w1 " · · · " wk".

Lemma 1. For any P,Q ∈ Π, P !∗ Q implies FreqS(P) ≥ FreqS(Q).

Lemma 2 (general pruning rule). Let ≡ be any rightmost-gap-independent
equivalence relation on Π. Under ≡, if P ∈ Π is not i-th-gap-closed for some i
with 1 ≤ i < deg(P), then no descendant of P in ST is closed.

Algorithm 1 outlines a general algorithm for FreqCloPatEnum under any
rightmost-gap-independent equivalence relation. The algorithm performs a depth-
first-traversal of ST, with pruning based on Lemmas 1 and 2. We note that the
algorithm does not build ST actually.

4.2 Closedness tests

We now consider how to realize the inner-, the leftmost- and the rightmost-
closedness tests. An equivalence relation ≡ on Π is said to be inner-gap-monotone
if for any P ∈ Π and any θ ∈ Θd − (Θ1

d ∪ Θd
d) with d = deg(P), P ≡ Pθ implies

that ∀Q ∈ Π, (P !∗ Q !∗ Pθ =⇒ P ≡ Q ≡ Pθ). We remark that the M, I and
E families are all inner-gap-monotone.

Lemma 3 (inner-gap-closedness test). Let ≡ be any inner-gap-monotone
equivalence relation on Π. Let P ∈ Π. Then, for any i with 1 < i < deg(P), P
is i-th-gap-closed under ≡ if P 0≡ Pθ for every primitive substitution θ in Θi

d.

For a monotone equivalence relation ≡, the leftmost- (resp. rightmost-) gap-
closedness of P ∈ Π can also be tested by checking whether P 0≡ Pθ for every
non-erasing primitive substitution θ in Θ1

d (resp. Θd
d). For

IX≡S and
EX≡S that are

not monotone, we have the following lemma:

9

Algorithm 1: General Algorithm GenCloFlex for FreqCloPatEnum

Input: a finite subset S of Σ+ and a non-negative integer σ.
Output: non-duplicate list of patterns P with FreqS(P) ≥ σ that are closed

under a rightmost-gap-independent equivalence relation ≡.
1 foreach a ∈ Σ do Expand(#a#);

procedure Expand(P);
1 let d := deg(P);
2 if FreqS(P) < σ then return ;
3 if (P is not leftmost-gap-closed) or (P is not inner-gap-closed) then
4 return; // Pruning

// Now P is leftmost-gap-closed and inner-gap-closed
5 if P is rightmost-gap-closed then // P is closed
6 report P ;

7 foreach a ∈ Σ do
8 Expand(#P # a#);

9 Expand(#Pa#);

Table 1. Time complexities of the leftmost-, the
rightmost- and the inner-gap-closedness tests for re-
spective equivalence relations.

leftmost-gap-
closedness

rightmost-gap-
closedness

inner-gap-
closedness

I≡S (always true) (always true) O(‖S‖d)
IX≡S O(‖S‖) O(‖S‖) O(‖S‖d)
M≡S (always true) (always true) O(‖S‖d)
MX≡S O(‖S‖) O(‖S‖) O(‖S‖d)
MXG≡ S O(‖S‖) O(‖S‖) O(‖S‖d)
E≡S O(‖S‖) (always true) O(‖S‖)
EX≡S O(‖S‖) O(‖S‖) O(‖S‖)

Table 2. Delay time per out-
put for respective equivalence re-
lations.

GenCloFlex GenCloFlex+

I≡S O(|Σ|‖S‖d) O(|Σ|‖S‖d)
IX≡S O(|Σ|‖S‖2d) O(|Σ|‖S‖d)
M≡S O(|Σ|‖S‖d) O(|Σ|‖S‖d)
MX≡S O(|Σ|‖S‖2d) O(|Σ|‖S‖d)
MXG≡ S O(|Σ|‖S‖2d) O(|Σ|‖S‖2d)
E≡S O(|Σ|‖S‖) [2] O(|Σ|‖S‖)

EX≡S O(|Σ|‖S‖2) O(|Σ|‖S‖)

Lemma 4 (leftmost-, rightmost-gap-closedness tests for
IX≡S,

EX≡S,
MX≡S).

Let ≡∈ { IX≡S ,
EX≡S ,

MX≡S} and P ∈ Π. P is leftmost-gap-closed under ≡ if P 0≡ "aP"
for every a ∈ Σ. P is rightmost-gap-closed under ≡ if P 0≡ "Pa" for every a ∈ Σ.

Lemma 5. The time complexities of the leftmost-, the rightmost- and the inner-
gap-closedness tests for P ∈ Π with d = deg(P) are summarized in Table 1.

Proof. The leftmost- and the rightmost-gap-closedness tests for
I≡S and

M≡S and
the rightmost-gap-closedness test for

E≡S are unnecessary by their definitions.
The leftmost-gap-closedness test for

E≡S takes O(‖S‖) time as shown in [2]. By
Lemma 4 the leftmost-gap-closedness test (resp. the rightmost-gap-closedness
test) for

MX≡S can be performed simply by checking whether all minimal occur-
rences of P are directly preceded by (resp. followed by) a same symbol. This

10

takes O(‖S‖) time. Similarly, the rightmost-gap-closedness test for
EX≡S and the

leftmost- and the rightmost-gap-closedness test for
IX≡S take O(‖S‖) time. Now

we consider the rightmost-gap-closedness test for
MXG≡ S . What we have to do

is to check whether there exists a non-erasing primitive substitution θ in Θd
d

which preserves |Min(IntT (P))| in every T ∈ S. Let e1, . . . , em be the increas-
ing sequence of ending positions of Min(IntT (P)). Let Ii = [e1 + 1, ei+1] for
i = 1, . . . , m−1 and let Im = [em +1, |T |]. We can build the list of symbols com-
mon to the substrings of T implied by I1, . . . , Im in O(|T |) time. The test thus
takes O(‖S‖) time. The leftmost-gap-closedness test also takes O(‖S‖) time.

We now suppose d > 2 for the inner-gap-closedness test. For the E family, it
suffices to determine whether Pθ occurs within the leftmost occurrence interval
of P . This can be done in O(‖S‖) time independently of d by using an auxiliary
data structure of size O(‖S‖d) as shown in [2]. For the M family, we have to check
it over all minimal occurrence intervals of P , and the same technique cannot be
applied. This takes O(‖S‖d) time and space. For the I family, we basically check
it over all occurrence intervals of P . For the erasing primitive substitution θ in
Θ2

d (resp. Θd−1
d), it suffices to check whether Pθ begins (resp. ends) at every

beginning (resp. ending) positions of occurrence intervals of P . For the other
erasing primitive substitutions or for the non-erasing primitive substitutions, it
suffices to consider only the minimal occurrence intervals. 67

4.3 Improved algorithms for respective equivalence relations

We introduce new efficient pruning techniques based on common extensions.
Especially, the techniques improve the time complexity for

MX≡S ,
IX≡S and

EX≡S , as
shown in Table 2.

Let ≡∈ { M≡S ,
MX≡S ,

MXG≡ S ,
I≡S ,

IX≡S ,
E≡S ,

EX≡S}. The longest common extension of
P ∈ Π under ≡ is the longest string v ∈ Σ∗ such that for every T ∈ S,

– Min(IntT ("Pv")) = Min(IntT (P)) ⊕ 〈0, |v|〉 when ≡ ∈ { M≡S ,
MX≡S ,

MXG≡ S};
– IntT ("Pv") = IntT (P) ⊕ 〈0, |v|〉 when ≡ ∈ { I≡S ,

IX≡S ,
E≡S ,

EX≡S}.

When v 0= ε, c = v[1] is said to be the common extension of P under ≡.
The following lemmas help us to skip unnecessary closedness tests.

Lemma 6 (skipping leftmost- and inner-gap-closedness tests). Let ≡∈
{ M≡S ,

MX≡S ,
MXG≡ S ,

I≡S ,
IX≡S ,

E≡S ,
EX≡S} and let c ∈ Σ be the common extension of P ∈ Π

under ≡. If P is leftmost- and inner-gap-closed under ≡, "Pc" is also leftmost-
and inner-gap-closed under ≡.

Lemma 7 (skipping rightmost-gap-closedness tests). Let ≡ ∈ {MX≡S ,
MXG≡ S

,
IX≡S ,

EX≡S} and let c ∈ Σ be the common extension of P ∈ Π under ≡. Then P
is not rightmost-gap-closed under ≡.

For the M family, we can utilize the following lemma for pruning.

11

Lemma 8 (pruning for the M family). Let ≡∈ { M≡S ,
MX≡S ,

MXG≡ S} and let c ∈ Σ
be the common extension of P ∈ Π under ≡. Then among the descendants of P
in ST, only descendants of "Pc" can be closed under ≡.

Proof. Since Min(IntT ("Pc")) = Min(IntT (P))⊕〈0, 1〉 for every T ∈ S, "P"c" is
not closed due to "P "c" ≡ "Pc". Since 〈"P " a", "Pc " a"〉 ∈ !+∩ ≡, "P " a" is
not closed for any a ∈ Σ−{c}. Let P = "w1 " · · · "wk", where w1, . . . , wk ∈ Σ+.
Let P ′ = "w1 " · · · " wk−1 " b " wka", where b is the first symbol of wk. Since
〈"Pa", P ′〉 ∈ !+∩ ≡, "Pa" is not closed for any a ∈ Σ − {c}. Since ≡ is
monotone, the lemma holds. 67

For the I and E families, we can utilize the following lemmas for pruning.

Lemma 9 (pruning for the I and E families). Let ≡∈ { I≡S ,
IX≡S ,

E≡S ,
EX≡S}

and let c ∈ Σ be the common extension of P ∈ Π under ≡. Then among the
descendants of P in ST, only descendants of "Pc" and of "P "c" can be closed
under ≡.

Proof. "Pa" does not occur in S for any a ∈ Σ − {c}. Since 〈"P "a", "Pc"a"〉 ∈
!+∩ ≡, "P "a" is not inner-gap-closed for any a ∈ Σ − {c}. Since ≡ is inner-
gap-monotone, the lemma holds. 67

Lemma 10. Let ≡∈ { I≡S ,
IX≡S ,

E≡S ,
EX≡S} and let c ∈ Σ be the common extension

of P ∈ Π under ≡. |End(IntT (P))| = |{i | min{End(IntT (P))} < i ≤ |T |, T [i] =
c}| for every T ∈ S ⇐⇒ "P "c" ≡ "Pc".

Proof. Since c is the common extension of P under ≡, IntT ("Pc") = IntT (P)⊕
〈0, 1〉 for every T ∈ S. Adding to this, the left-hand condition implies that
IntT ("P"c") = IntT ("Pc") for every T ∈ S. Hence the =⇒ statement holds. The
⇐= statement follows from the fact that |End(IntT ("P"c"))| > |End(IntT ("Pc"))|
for some T ∈ S if the left-hand condition does not hold. 67

For any ≡∈ { M≡S ,
MX≡S ,

MXG≡ S ,
I≡S ,

IX≡S ,
E≡S ,

EX≡S} and P ∈ Π, the common exten-
sion c of P under ≡ is said to make a branch if "P "c" 0≡ "Pc". Clearly from
Lemma 8, any common extension does not make a branch for the M family. For
the I and E families, it follows from Lemma 10 that a common extension c makes
a branch iff |End(IntT (P))| < |{i | min{End(IntT (P))} < i ≤ |T |, T [i] = c}| for
some T ∈ S.

The algorithm based on Lemmas 6, 7, 8, 9 and 10 can be summarized as
Algorithm 2. We remark that the longest common extension v can be represented
in constant space, by the pair of a pointer to some position in T ∈ S where v
occurs and length |v|.

4.4 Time complexities

Theorem 3 (GenCloFlex,GenCloFlex+). For a finite alphabet Σ, Algorithms 1
and 2 solve FreqCloPatEnum for respective equivalence relations with time
delay shown in Table 2 and O(‖S‖d) space, where d is the maximum number of
gaps in the output patterns.

12

Algorithm 2: Improved Algorithm GenCloFlex+ for FreqCloPatEnum

Input: a finite subset S of Σ+ and a non-negative integer σ.
Output: non-duplicate list of patterns P with FreqS(P) ≥ σ that are closed

under ≡ ∈ {M≡S ,
MX≡S ,

MXG≡ S ,
I≡S ,

IX≡S ,
E≡S ,

EX≡S}.
1 foreach a ∈ Σ do CheckExtension(#a#);

procedure ExpandWithCommonExtension(P , v);
1 if P is rightmost-gap-closed then // When |v| > 0, use Lemma 7
2 report P ;

3 if |v| > 0 then
4 let c := v[1];

5 ExpandWithCommonExtension(#Pc#, v[2..|v|]);
6 if c makes a branch then
7 CheckExtension(#P # c#);

8 else
9 foreach a ∈ Σ do

10 CheckExtension(#P # a#);

11 CheckExtension(#Pa#);

procedure CheckExtension(P);
1 if FreqS(P) < σ then return ;
2 if (P is not leftmost-gap-closed) or (P is not inner-gap-closed) then
3 return; // Pruning

// Now P is leftmost-gap-closed and inner-gap-closed
4 compute the longest common extension v of P under ≡;
5 ExpandWithCommonExtension(P , v);

Proof. Let CT≡ denote the cost of the closedness test under ≡, i.e., CT≡ ∈
O(‖S‖) if ≡ is the E family, CT≡ ∈ O(‖S‖d) if ≡ is the M or I family.

For GenCloFlex: For
M≡S ,

I≡S and
E≡S , the rightmost-gap-closedness test is

unnecessary and therefore the condition of the if -statement at Line 5 is always
satisfied and pattern P is always reported. As a result, the delay time per output
is obtained by O(|Σ| × CT≡). On the other hand, for

MX≡S ,
MXG≡ S ,

IX≡S and
EX≡S ,

pattern P is reported only when the condition is satisfied. Nevertheless, we can
find a frequent closed pattern after going down ST at most ‖S‖ unreported
patterns, and hence, the delay for output is O(|Σ|‖S‖ × CT≡).

For GenCloFlex+: At Line 4 of Procedure CheckExtension(P), we compute
the longest common extension of P under ≡. It is equivalent to compute the
longest common prefix of

⋃
T∈S{T [j + 1..|T |] | j ∈ End(Min(IntT (P)))} (resp.⋃

T∈S{T [j + 1..|T |] | j ∈ End(IntT (P))}) for the M family (resp. for the I and E
families), and hence, is done in O(‖S‖) time.

In the case of the I or E family, we also compute the positions where the
common extension makes a branch as follows.
For every T ∈ S in which P occurs, do the following:

13

1. Compute F (a) = |{i | min{End(IntT (P))} < i ≤ |T |, T [i] = a}| for any
symbol a used in v.

2. For each j = 1, . . . , |v| in increasing order, do the following:
(a) If |End(IntT (P))| < F (v[j]) then v[j] makes a branch.
(b) Decrement F (v[j]) by 1.

Thus we can compute the branching positions in v in O(‖S‖) time.
Here we estimate the delay time per output for ≡∈ {MX≡S ,

IX≡S ,
EX≡S}. Let us

consider the call CheckExtension(P) such that P is not rightmost-gap-closed,
i.e., there exists c ∈ Σ with P ≡ "Pc". From the definition of

MX≡S ,
IX≡S and

EX≡S ,
"Pv" is closed, where v is the longest common extension of P under ≡. Since v
can be computed in O(‖S‖) time and the closedness test for P takes O(CT≡)
time, we can output "Pv" in O(CT≡) time just after CheckExtension(P) is
executed. Hence the delay from a previous output to "Pv" is O(|Σ|×CT≡). 67

The closedness checks for
MXG≡ S take a constant factor more time than those for

M≡S and
MX≡S . However, it should be noted that the total theoretical asymptotic

worst case time complexities for
MXG≡ S is equal to or smaller than those for

M≡S

and
MX≡S , due to the smaller search space for

MXG≡ S in ST. Hence,
MXG≡ S never falls

far behind
M≡S and

MX≡S , and can be much faster.

5 Computational Experiments

We implemented our algorithms for I, M and E families in the C language. Recall
that

B≡S is just the reversal of
E≡S , and thus, GenCloFlex

E≡S can essentially
be regarded as MaxFlex [2]. Considering the trade-off in implementation, we
used naive matching to compute the longest common extensions, and did not
implement the pruning technique based on Lemma 10. All the computational
experiments were carried out on Apple Xserve with two Quad-Core Intel Xeon
at 2.93GHz (8 CPU x 2 HT), with 24GB Memory 1066MHz DDR3.

We carried out experiments on synthetic data. To create data sets for ex-
amining flexible pattern mining algorithms, we modified IBM sequence gen-
erator [1], which is widely used in the subsequence pattern mining research
area [3, 5–8, 13, 20]. The original program generates random sequences of item
sets and embeds copies of some item set sequence as a pattern which is ran-
domly corrupted. Although, originally, each item set is sorted and represented
as a sorted integer sequence, we use the unsorted sequence representation. Each
such sequence in the pattern is considered as a segment of the flexible pattern.
In this way, we are able to generate a data set of integer strings in which some
flexible patterns are embedded, where each segment is damaged in the same
manner as the original program (See [1] for more details).

There are several parameters: [D] number of generated strings in 1000s, [C]
average length of strings, [N] alphabet size in 1000s, [P] number of patterns, [L]
average number of segments of patterns and [S] average length of segments of

14

Table 3. Experiments on Synthetic Data Sets (threshold value is fixed to σ = 10)

D5C40N1P500L4S2 D5C40N1P500L4S4 D5C40N1P500L4S6
algorithm/equiv patterns seconds patterns seconds patterns seconds

GenCloFlex
I≡S 271,412 1155 216,513 1119 201,746 972

GenCloFlex+
I≡S 271,412 1105 (96%) 216,513 967 (86%) 201,746 800 (82%)

GenCloFlex+
IX≡S 255,910 (94%) 1104 (96%) 182,868 (84%) 970 (87%) 159,898 (79%) 777 (80%)

GenCloFlex
M≡S 294,183 1225 285,954 1434 305,893 1360

GenCloFlex+
M≡S 294,183 1161 (95%) 285,954 1116 (78%) 305,893 948 (70%)

GenCloFlex+
MX≡S 253,928 (86%) 1075 (88%) 180,576 (63%) 928 (65%) 162,658 (53%) 781 (57%)

GenCloFlex+
MXG≡ S 247,036 (84%) 1060 (87%) 165,175 (58%) 874 (61%) 143,930 (47%) 731 (54%)

GenCloFlex
E≡S 311,526 1380 328,368 1717 341,138 1545

GenCloFlex+
E≡S 311,526 1266 (92%) 328,368 1368 (80%) 341,138 1100 (71%)

GenCloFlex+
EX≡S 270,511 (87%) 1180 (86%) 209,971 (64%) 1146 (67%) 184,289 (54%) 904 (59%)

patterns. We omitted scalability tests since we clearly showed time complexities
of our algorithms. Instead we are interested in how the parameter [S] affects
efficiency of our algorithms, and therefore experimented on three data sets with
parameters D5C40N1P500L4S2, D5C40N1P500L4S4 and D5C40N1P500L4S6.

In Table 3, we compare the number of output closed patterns and computa-
tional time, where xx% is the relative ratio compared to GenCloFlex of respective
families. The result shows that redundant output patterns which can be removed
by our coarsened equivalence relations increase as the average length of frequent
segments embedded in a data set becomes longer. Thus our algorithms with
coarsened equivalence relations would be effective especially for data which is
expected to contain long frequent segments such as bio-sequences.

6 Conclusion

We addressed the closed pattern discovery problem for the class of flexible pat-
terns. We focused on the minimal-occurrence-interval based equivalence relation
M≡S on the set of patterns introduced by Mannila et al. [9], and proposed two
new equivalence relations by coarsening it. We investigated the properties of
equivalence relations on the patterns from viewpoints of closed pattern enu-
meration, and as a generalization of the algorithm proposed by Arimura and
Uno [2], we showed a general algorithm for enumerating closed patterns for
existing and newly proposed equivalence relations of various kinds. Then we
accelerated the algorithm by a set of new pruning techniques. Computational
experiments on synthetic data implied that the proposed equivalence relations
successfully remove some redundancy in the output patterns compared to the
existing equivalence relations. Finally, although the results are not shown due
to space limitation, we applied our algorithm on real data: Waka poems – tra-
ditional Japanese poetry with over 1300-year history – and confirmed that our
algorithms with coarsened equivalence relations output reasonable amounts of
mined patterns and increase their readability.

15

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE. pp. 3–14 (1995)
2. Arimura, H., Uno, T.: Mining maximal flexible patterns in a sequence. In: JSAI’07.

pp. 307–317 (2008)
3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a

bitmap representation. In: KDD. pp. 429–435 (2002)
4. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete

inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)
5. Ding, B., Lo, D., Han, J., Khoo, S.C.: Efficient mining of closed repetitive gapped

subsequences from a sequence database. In: ICDE. pp. 1024–1035 (2009)
6. Lo, D., Cheng, H., Lucia: Mining closed discriminative dyadic sequential patterns.

In: EDBT. pp. 21–32 (2011)
7. Lo, D., Ding, B., Lucia, Han, J.: Bidirectional mining of non-redundant recurrent

rules from a sequence database. In: ICDE. pp. 1043–1054 (2011)
8. Lo, D., Khoo, S.C., Li, J.: Mining and ranking generators of sequential patterns.

In: SDM. pp. 553–564 (2008)
9. Mannila, H., Toivonen, H., Verkamo, I.A.: Discovery of frequent episodes in event

sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)
10. Parida, L., Rigoutsos, I., Floratos, A., Platt, D.E., Gao, Y.: Pattern discovery on

character sets and real-valued data: linear bound on irredundant motifs and an
efficient polynomial time algorithm. In: Proc. SODA. pp. 297–308 (2000)

11. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixs-
pan: Mining sequential patterns by prefix-projected growth. In: ICDE. pp. 215–224
(2001)

12. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.F.: A basis of tiling motifs
for generating repeated patterns and its complexity for higher quorum. In: Proc.
MFCS. pp. 622–631 (2003)

13. Räıssi, C., Calders, T., Poncelet, P.: Mining conjunctive sequential patterns. In:
ECML/PKDD (1). p. 19 (2008)

14. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: EDBT. pp. 3–17 (1996)

15. Tatti, N., Cule, B.: Mining closed strict episodes. In: ICDM. pp. 501–510 (2010)
16. Wang, J., Han, J.: BIDE: Efficient mining of frequent closed sequences. In: ICDE.

pp. 79–90 (2004)
17. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate

maintenance. IEEE Transactions on Knowledge and Data Engineering 19(8), 1042–
1056 (2007)

18. Wang, K., Xu, Y., Yu, J.X.: Scalable sequential pattern mining for biological se-
quences. In: CIKM. pp. 178–187 (2004)

19. Wu, H.W., Lee, A.J.: Mining closed flexible patterns in time-series databases. Ex-
pert Systems with Applications 37(3), 2098 – 2107 (2010)

20. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large
databases. In: SDM (2003)

21. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1/2), 31–60 (2001)

22. Zhou, W., Liu, H., Cheng, H.: Mining closed episodes from event sequences effi-
ciently. In: PAKDD. pp. 301–318 (2010)

16

