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Abstract. We present a first algorithm for direct construction of param-
eterized suffix arrays and parameterized longest common prefix arrays
for non-binary strings. Experimental results show that our algorithm is
much faster than näıve methods.

1 Introduction

Parameterized pattern matching is a form of pattern matching first introduced by
Baker [1], that allows for interchange in the alphabet. More formally, let Π be the
set of parameter symbols and Σ be the set of constant symbols. Strings over Π∪Σ
are called parameterized strings (p-strings). Two p-strings of the same length are
said to parameterized match (p-match) if one string can be transformed into the
other by using a bijection on Σ ∪Π, with the restriction that the bijection must
be the identity on the constant symbols of Σ. In other words, the bijection maps
any a ∈ Σ to a itself, while symbols of Π can be interchanged. Examples of
applications of parameterized pattern matching are software maintenance [1, 2],
plagiarism detection [3], and RNA structural matching [4].

For the standard pattern matching problem, there exist several data struc-
tures that can be obtained by preprocessing the text string so that pattern
matching can be performed efficiently. The most famous are the suffix tree [5]
and suffix array [6]. These data structures can both be constructed directly in
linear time [5, 7–12], independent of the alphabet size. Most operations on a
suffix tree can be efficiently simulated with the suffix array and several other
auxiliary arrays, including an array containing the lengths of longest common
prefixes of the suffixes (LCP array), composing an enhanced suffix array [13, 14].
The array representation has become more preferable as it requires less memory,
and is generally faster to construct and work on, due to memory access locality.

For p-string pattern matching, Baker [2] introduced the parameterized suffix
tree (p-suffix tree), which is similar in concept to the suffix tree. Baker gave an
O(n(π + log(π + σ))) time algorithm to construct the p-suffix tree for a given
text string, where n is the text length, π = |Π| and σ = |Σ|. Kosaraju [15]
proposed an algorithm to construct p-suffix trees in O(n(log π + log σ)) time.
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Both algorithms are based on McCreight’s construction algorithm for standard
suffix trees [7]. Shibuya [4] gave an on-line construction algorithm working in
O(n(log π + log σ)) time, which is based on Ukkonen’s construction algorithm
for standard suffix trees [8]. Given a pattern p of length m, we can compute the
set Pocc of all positions of t where the corresponding substring of t p-matches
pattern p in O(m log(π + σ) + |Pocc|) time, using the p-suffix tree of a text t.

Concerning the array representation, parameterized suffix arrays were con-
sidered by Deguchi et al. [16]. The parameterized pattern matching problem
can be solved in O(m log n+ |Pocc|) time with a simple binary search, or O(m+
log n+ |Pocc|)) with a binary search utilizing PLCP information, or O(m log(π+
σ) + |Pocc|) time if we consider enhanced p-suffix arrays. As with the case of
standard suffix trees and arrays, the array representation is superior in memory
usage and memory access locality. Deguchi et al. presented a linear time algo-
rithm for direct construction of the parameterized suffix array and parameterized
LCP (PLCP) array for binary strings. To the best of our knowledge, no efficient
algorithm for direct construction of a parameterized suffix array and PLCP ar-
ray for non-binary strings exist, and the best theoretical worst-case time bound
is O(n2), using a standard radix sort on strings.

This paper presents a new algorithm for efficient construction of p-suffix
arrays and PLCP arrays for non-binary strings. For p-suffix array construction,
our algorithm combines any string sorting algorithm with linear time pre- and
post processing. Though we are unable to reduce the theoretical worst case time
bound, our algorithm considerably reduces the number of suffixes to be sorted
using the string sorting algorithm, hence greatly reducing the running time. For
the PLCP array, we modify the linear time LCP array construction algorithm
of [17], so that it can be used for p-strings. However, due to properties of p-
strings, it is still open if the theoretical time bound of our algorithm is linear.
Computational experiments show both our algorithms are generally much faster
than näıve approaches for various texts.

2 Preliminaries

Let Σ and Π be two disjoint finite sets of constant symbols and parameter
symbols, respectively. An element of (Σ ∪ Π)∗ is called a p-string. The length
of any p-string s is the total number of constant and parameter symbols in s
and is denoted by |s|. For any p-string s of length n, the i-th symbol is denoted
by s[i] for each 1 ≤ i ≤ n, and the substring starting at position i and ending
at position j is denoted by s[i : j] for 1 ≤ i ≤ j ≤ n. In particular, s[1 : j]
and s[i : n] denote the prefix of length j and the suffix of length n − i + 1 of
s, respectively. For any two strings s and t, lcp(s, t) denotes the length of the
longest common prefix of s and t.

Definition 1 (Parameterized Matching). Any two p-strings s and t of the
same length m are said to parameterized match (p-match) iff one of the following
conditions hold for every 1 ≤ i ≤ m:
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1. s[i] = t[i] ∈ Σ,
2. s[i], t[i] ∈ Π, s[i] ̸= s[j] and t[i] ̸= t[j] for any 1 ≤ j < i,
3. s[i], t[i] ∈ Π, s[i] = s[i − k] for any 1 ≤ k < i iff t[i] = t[i − k].

We write s ≃ t when s and t p-match.
For example, let Π = {a, b, c}, Σ = {X, Y}, s = abaXabY and t = bcbXbcY.

Observe that s ≃ t.
Let N be the set of non-negative integers. For any non-negative integers

i ≤ j ∈ N , let [i, j] = {i, i + 1, . . . , j} ⊂ N .

Definition 2. We define pv : (Σ ∪ Π)∗ → (Σ ∪ N )∗ to be the function such
that for any p-string s of length n, pv(s) = u where, for 1 ≤ i ≤ n,

u[i] =


s[i] if s[i] ∈ Σ,
0 if s[i] ∈ Π and s[i] ̸= s[j] for any 1 ≤ j < i,
i − k if s[i] ∈ Π and k = max{j | s[i] = s[j], 1 ≤ j < i}.

In the running example, pv(s) = 002X24Y with s = abaXabY.
The following proposition is clear from Definition 2.

Proposition 1. For any p-string s of length n, it holds for any 1 ≤ i ≤ j ≤ n
that pv(s[i : j]) = v[1 : j − i + 1], where v = pv(s[i : n]).

Proposition 2 ([2]). For any two p-strings s and t of the same length, s ≃ t
iff pv(s) = pv(t).

In the running example, we then have s ≃ t and pv(s) = pv(t) = 002X24Y.
We also define the dual of the pv function, as follows:

Definition 3. We define fw : (Σ ∪ Π)∗ → (Σ ∪ N ∪ {∞})∗ to be the function
such that for any p-string s of length n, fw(s) = w where, for 1 ≤ i ≤ n,

w[i] =


s[i] if s[i] ∈ Σ,
∞ if s[i] ∈ Π and s[i] ̸= s[j] for any i < j ≤ n,
k − i if s[i] ∈ Π and k = min{j | s[i] = s[j], i < j ≤ n}.

Here, ∞ denotes a value for which i < ∞ for any i ∈ N . 1

In the running example, fw(s) = 242X∞∞Y with s = abaXabY.

Proposition 3. For any p-string s of length n, it holds for any 1 ≤ i ≤ n that
fw(s[i : n]) = w[i : n], where w = fw(s).

For any p-string s of length n, pv(s) and fw(s) can be computed in O(n)
time with extra O(π) space, using a table of size π recording the last position of
each parameter symbol in the left-to-right (resp. right-to-left) scanning of s [2].
1 In practice, n can be used in place of ∞ as long as we are considering a single p-string

of length n, and its substrings.
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Problem 1 (P-matching problem). Given any two p-strings t and p of length n
and m respectively, n ≥ m, compute Pocc(t, p) = {i | t[i : i + m − 1] ≃ p}.

Proposition 2 implies that Pocc(t, p) = {i | pv(p) = pv(t[i : i + m − 1])}.

Lemma 1 ([18]). Problem 1 on alphabet Σ ∪ Π is reducible in linear time to
Problem 1 on alphabet Π.

Due to the above lemma, in the remainder of the paper, we consider only p-
strings in Π∗. Then, note that for any p-string s of length n, pv(s) ∈ {[0, n−1]}n

and fw(s) ∈ {[1, n − 1] ∪ {∞}}n. We also see that if pv(s)[i] > 0 then fw(s)[i −
pv(s)[i]] = pv(s)[i]. Similarly, if fw(s)[i] < n then pv(s)[i + fw(s)[i]] = fw(s)[i].

Let ≼ denote the standard lexicographic ordering on strings of an integer
alphabet. To simplify discussions on the end of strings, we assume that for any
p-string s, pv(s)[i] = −1 for any i > |s|.

In this paper, we will consider construction of the following data structures.

Definition 4 (P-suffix Array). For any p-string s ∈ Πn of length n, its p-
suffix array PSAs is an array of length n such that PSAs[i] = j, where pv(s[j : n])
is the lexicographically i-th element of {pv(s[k : n]) | 1 ≤ k ≤ n}.

Definition 5 (PLCP Array). For any p-string s ∈ Πn of length n, its PLCP
array PLCPs is an array of length n such that

PLCPs[i] =

{
−1 if i = 1,
lcp(pv(s[PSA[i − 1] : n]), pv([s[PSA[i] : n])) if 2 ≤ i ≤ n.

We abbreviate PLCPs as PLCP when clear from the context. The following is
a useful auxiliary array that we will use for the construction of PLCP .

Definition 6 (rank array). For any p-string s ∈ Πn of length n, its rank array
ranks is an array of length n such that ranks[PSAs[i]] = i, for any 1 ≤ i ≤ n.

We abbreviate ranks as rank when clear from the context. Note that ranks[i]
can be computed in linear time from PSAs for all i where 1 ≤ i ≤ n.

Table 1 shows an example of a p-suffix array, PLCP array and rank array for
the string s = babbcacaabcb.

The PSA, PLCP , and rank arrays can naturally be used in similar ways as
the suffix, LCP, and rank arrays for standard strings. PSA and PLCP arrays can
be constructed by a linear time traversal on the p-suffix tree. However, unlike
standard suffix arrays and lcp arrays, direct linear time algorithms that do not
construct the tree as an intermediate data structure are not known, except for
the case of binary alphabets [16].

The main difficulty in developing efficient algorithms for constructing PSA
and PLCP is that for any p-string s, a suffix pv(s)[i : n] of pv(s) is not necessarily
equal to pv(s[i : n]) of the suffix s[i : n]. As an important consequence, for any
p-strings s, t with lcp(pv(s), pv(t)) > 0, pv(s) ≼ pv(t) does not necessarily imply
pv(s[2 : |s|]) ≼ pv(t[2 : |t|]), which is a property essential for efficient construction
algorithms in the standard case.
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Table 1. PSAt and PLCP t for p-string s = babbcacaabcb.

i PSA[i] PLCP [i] rank[i] 1 2 3 4 5 6 7 8 9 10 11 12 zlen[PSA[i]] type

1 12 -1 9 0 1 A

2 11 1 6 0 0 2 A

3 9 2 12 0 0 0 2 3 B
4 4 4 4 0 0 0 2 2 1 6 4 2 3 B

5 7 2 10 0 0 1 0 4 2 2 B
6 2 6 8 0 0 1 0 4 2 2 1 6 4 2 2 B

7 10 2 5 0 0 2 2 C
8 6 3 11 0 0 2 1 0 4 2 2 C
9 1 7 3 0 0 2 1 0 4 2 2 1 6 4 2 2 C

10 5 3 7 0 0 2 2 1 0 4 2 2 C

11 8 1 2 0 1 0 0 2 1 C
12 3 5 1 0 1 0 0 2 2 1 6 4 2 1 C

3 Algorithm

For our lightweight algorithm, we will use the number of contiguous zeroes in
the prefix of each suffix pv(s[i : n]), to sort them coarsely.

Definition 7. For any p-string s of length n, we define zlens[i] as the length of
contiguous zeroes in the prefix of pv(s[i : n]) for any 1 ≤ i ≤ n. That is,

zlens[i] = max
{
j

∣∣ pv(s[i : i + j − 1]) = 0j , 1 ≤ j ≤ n − i + 1
}
.

We abbreviate zlens as zlen when clear from the context. Note that zlens[i]
can be computed in amortized linear time for all i where 1 ≤ i ≤ n.

3.1 Constructing P-suffix Array

zlen divides the set of suffixes s[i : n](1 ≤ i ≤ n) of p-string s into 3 types.

– Type A: those consisting of zeroes only, that is zlens[i] = |s| − i + 1.
– Type B: those with zlens[i] < |s|−i+1 and zlens[i] > pv(s[i : n])[zlens[i]+1]
– Type C: those with zlens[i] < |s|−i+1 and zlens[i] = pv(s[i : n])[zlens[i]+1].

Our algorithm consists of the following steps.

1. Calculate zlens[i] for all i in linear time and determine its type.
2. Determine the positions of type A suffixes using zlens[i].
3. Coarsely sort all type B and C suffixes in linear time by radix sort using

zlens[i] and the first non-zero value pv(s[i : n])[zlens[i] + 1] in pv(s[i : n]).
4. Determine the positions of the type B suffixes using any sorting algorithm.
5. Determine the positions of the remaining type C suffixes in linear time.
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Each step can be calculated in linear time except for Step 4 which depends on
the underlying sort algorithm. We will describe the details of each step below.

First, we determine the positions of the type A suffixes (Step 2). Let As

denote the number of type A suffixes of s. For the type A suffixes, it is obvious
that PSAs[1 : As] = n, n − 1, . . . , n − As + 1.

For the type B and C suffixes (Step 3), they are divided into blocks of suffixes
that have the same zlen value and first non-zero value. We can determine the
order of these blocks in linear time and space by radix sort, that is, bucket
sort first in ascending order of the first non-zero value and then in descending
order of the zlen value. For any suffix i, the first non-zero value is not greater
than zlen[i]. Therefore, we can also do this operation by a single bucket sort in
descending order of

∑zlen[i]
t=1 t−pv(s[i : n])[zlen[i]+1] = zlen[i](zlen[i]+1)

2 −pv(s[i :
n])[zlen[i] + 1]. This alternative method works in linear time and space, as long
as z(z+1)

2 = O(n), where z = max {zlens[i] | 1 ≤ i ≤ n − As}.
Step 4 is then conducted using any string sorting algorithm within each

type B block. Note that within a block, it suffices to see the order of pv(s[i :
n])[zlens[i] + 2 : n] since they will have a common prefix of length zlens[i] + 1.

Let PSAs denote the intermediate array obtained just after processing Step 4,
that is, only the type C suffixes are not in position yet. The next lemmas describe
the key properties for sorting these remaining suffixes in linear time (Step 5).

Lemma 2. Let s be a p-string of length n. For any i, j (1 ≤ i, j ≤ n − 1), if
fw(s)[i] ≥ fw(s)[j] and pv(s[i + 1 : n]) ≺ pv(s[j + 1 : n]), then pv(s[i : n]) ≺
pv(s[j : n]).

Proof. Assume on the contrary that pv(s[i : n]) ≻ pv(s[j : n]). Let l be
lcp(pv(s[i : n]), pv(s[j : n])). Since pv(s[i : n]) ≻ pv(s[j : n]), then

pv(s[i : n])[1 : l] = pv(s[j : n])[1 : l], pv(s[i : n])[l + 1] > pv(s[j : n])[l + 1].

(i) fw(s)[j] > l. Since fw(s)[i] ≥ fw(s)[j], then pv(s[i + 1 : n])[1 : l − 1] =
pv(s[j + 1 : n])[1 : l − 1], pv(s[i + 1 : n])[l] > pv(s[j + 1 : n])[l]. We get
pv(s[i + 1 : n]) ≻ pv(s[j + 1 : n]), a contradiction.
(ii) fw(s)[j] = l. By assumption, pv(s[i : n])[l + 1] > pv(s[j : n])[l + 1] =
fw(s)[j] = l. However, by Definition 2, pv(s[i : n])[l + 1] ≤ l, a contradiction.
(iii) fw(s)[j] < l. Since fw(s)[i] = fw(s)[j], then pv(s[i + 1 : n])[1 : l − 1] =
pv(s[j + 1 : n])[1 : l − 1], pv(s[i + 1 : n])[l] > pv(s[j + 1 : n])[l]. We get
pv(s[i + 1 : n]) ≻ pv(s[j + 1 : n]), a contradiction. ⊓⊔

Lemma 3. Let s be a p-string of length n. For any i (1 ≤ i ≤ n − 1), if
pv(s[i : n]) is a type C suffix, then pv(s[i + 1 : n]) ≺ pv(s[i : n]).

Proof. Assume on the contrary that pv(s[i + 1 : n]) ≻ pv(s[i : n]). Since pv(s[i :
n]) is a type C suffix, zlen[i + 1] ≥ zlen[i]. Then for some k (zlen[i] + 2 ≤ k ≤
n−i+1), pv(s[i+1 : n])[1 : k−1] = pv(s[i : n])[1 : k−1] and pv(s[i+1 : n])[k] >
pv(s[i : n])[k]. In addition, it follows from pv(s[i : n])[zlen[i] + 1] = zlen[i] that
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// Initialize:
// head[i] = k: min position in type C block with k = zlen[PSA[j]]
// block[i] = if(PSA[i]-1 is type C) then zlen[PSA[i]-1] else 0
for (i = 1; i < n; i++) {
j = block[psa[i]];
if (j != 0) { // s[psa[i]-1:n] is type C

psa[head[j]] = psa[i] - 1; // determine its position in block j
head[j]++; // increment head position of block

}
}

Fig. 1. Algorithm for sorting type C suffixes in linear time. Note that the initialization
of head and block arrays can be done in linear time.

pv(s[i + 1 : n])[zlen[i] + 1 : n] = pv(s[i : n])[zlen[i] + 2 : n − 1]. Here,

pv(s[i : n])[k] = pv(s[i + 1 : n])[k − 1] = pv(s[i : n])[k − 1]
= pv(s[i + 1 : n])[k − 2] = pv(s[i : n])[k − 2]
= · · · = pv(s[i + 1 : n])[zlen[i] + 1] = pv(s[i : n])[zlen[i] + 1] = zlen[i].

Hence pv(s[i + 1 : n])[1 : k − 1] = 0zlen[i]zlen[i]k−1−zlen[i]. This implies that
pv(s[i + 1 : n])[k] ≤ zlen[i] = pv(s[i : n])[k], a contradiction. ⊓⊔

Theorem 1. Let s be a p-string of length n. If the positions of type A and B
suffixes are determined, the positions of the remaining type C suffixes can be
determined in linear time.

Proof. From Lemma 2, if pv(s[i + 1 : n]) ≺ pv(s[j + 1] : n) and pv(s[i : n]),
pv(s[j : n]) are in the same type C block, we have pv(s[i : n]) ≺ pv(s[j : n])
since fw values are equal. Therefore, we scan PSAs in increasing order and
determine the correct position of type C suffix pv(s[i : n]) if the position of
suffix pv(s[i + 1 : n]) is already determined. This is guaranteed by Lemma 3,
since the position of suffix pv(s[i + 1 : n]) precedes that of pv(s[i : n]). Hence,
we can determine the positions of the type C suffixes by running through PSAs

once. ⊓⊔

Fig. 1 shows our linear time sorting algorithm for type C suffixes.

3.2 Constructing PLCP Array

This section considers the construction of PLCP arrays, given the p-suffix array.
For standard LCP arrays, Kasai et al. [17] showed a linear time algorithm for
its construction, given the suffix array. However, the same algorithm cannot be
applied directly to PLCP arrays because of the difficulties mentioned at the end
of Section 2. In the following, we show some characteristics of PLCP arrays and
propose P-Kasai, a modified version of the algorithm of [17].

For the type A suffixes, it is obvious that PLCPs[1 : As] = −1, 1, 2, . . . , As−1.
Hence we mainly consider computing PLCPs[i] where As < i ≤ n.
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Lemma 4. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < n), if li > 0 then{

li+1 ≥ li − 1 if pv(s[j + 1 : n]) ≺ pv(s[i + 1 : n]),
lj+1 ≥ li − 1 if pv(s[j + 1 : n]) ≻ pv(s[i + 1 : n]),

where j = PSA[rank [i] − 1].

Proof. Since pv(s[j : j+li−1]) = pv(s[i : i+li−1]), then pv(s[j+1 : j+li−1]) =
pv(s[i + 1 : i + li − 1]). If pv(s[j + 1 : n]) ≺ pv(s[i + 1 : n]), then for any
k (rank [j + 1] ≤ k ≤ rank [i + 1]),

pv(s[j +1 : j + li −1]) = pv(s[PSA[k] : PSA[k]+ li −2]) = pv(s[i+1 : i+ li −1]).

Hence, li+1 ≥ li − 1. Similarly, if pv(s[j + 1 : n]) ≻ pv(s[i + 1 : n]), we can get
lj+1 ≥ li − 1. ⊓⊔

Note that the case of li > 0 and pv(s[j +1 : n]) ≻ pv(s[i+1 : n]) does not occur
for LCP arrays, which is the key property for amortized linear time construction
algorithm [17]. In the case for PLCP arrays, for example, we can see in Table 1
that pv(s[2 : 12]) ≺ pv(s[10 : 12]) but pv(s[3 : 12]) ≻ (s[11 : 12]).

A necessary condition for pv(s[j + 1 : n]) ≻ pv(s[i + 1 : n]) is given below:

Lemma 5. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < n), if pv(s[j + 1 : n]) ≻ pv(s[i + 1 : n]) then pv(s[i : n])[li + 1] = li,
where j = PSA[rank [i] − 1].

Proof. First, pv(s[j + 1 : n])[1 : li − 1] = pv(s[i + 1 : n])[1 : li − 1], and by
Definition 2 pv(s[i : n])[li + 1] ≤ li. If we assume pv(s[i : n])[li + 1] < li, then

pv(s[j + 1 : n])[li] ≤ pv(s[j : n])[li + 1] < pv(s[i : n])[li + 1] = pv(s[i + 1 : n])[li].

This implies that pv(s[j + 1 : n]) ≺ pv(s[i + 1 : n]), a contradiction. ⊓⊔

Focusing on the case of pv(s[i + 1 : n]) ≺ pv(s[i : n]), we have:

Lemma 6. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < n), if pv(s[i : n])[li + 1] = li and pv(s[i + 1 : n]) ≺ pv(s[i : n]) then
zlen[i + 1] ≥ li.

Proof. Assume contrary that zlen[i + 1] < li. Since pv(s[i + 1 : n])[li] = 0, there
exists m = min{k | 2 ≤ k < li, pv(s[i+1 : n])[k] ̸= 0}, that is, zlen[i+1]=m−1,
and then zlen[i]=m. This implies pv(s[i :n])≺pv(s[i+1:n]), a contradiction. ⊓⊔

Lemmas 5 and 6 lead to the next lemma.

Lemma 7. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < As − 1), if pv(s[j + 1 : n]) ≻ pv(s[i + 1 : n]) and pv(s[i + 1 : n]) ≺
pv(s[i : n]) then{

li+1 = As if rank [i + 1] = As + 1 and li > As,

li+1 ≥ li otherwise,

where j = PSA[rank [i] − 1].
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plcp[1] = -1;
for (b = 2; psa[b] == n - b; b++) {

plcp[b] = b - 1; // PLCP for type A suffixes
}
// b = As + 1
k = 1;
for (i = 1; i <= n - b + 1; i++) {

j = psa[rank[i]-1];
if (plcp[rank[i]] > k)
k = plcp[rank[i]];

while (pv(s[i:n])[k+1] == pv(s[j:n])[k+1])
k++;

plcp[rank[i]] = k;
if (rank[j+1] < rank[i+1])
k--; // Kasai’s algorithm up to here

else { // below is modification
if (plcp[rank[j+1]] < k - 1)

plcp[rank[j+1]] = k - 1;
if (rank[i+1] < rank[i]) {

if (rank[i+1] == b && k > b - 1)
k = b - 1;

} else
k = 1;

}
}

Fig. 2. Algorithm for constructing PLCP array (P-Kasai).

Proof. It follows from Lemma 5 and 6 that zlen[i+1] ≥ li. If rank [i+1] = As+1,
it is obvious that zlen[PSA[rank [i+1]−1]] = zlen[PSA[As]] = As. In addition if
li > As, then pv(s[1 : As]) = 0As is a prefix of pv(s[i + 1 : n]). Hence li+1 = As.

On the other hand, in the case of rank [i+1] > As+1, we have zlen[PSA[rank [i+
1] − 1]] ≥ li, since type B and C suffixes are sorted in descending order of zlen.
If rank [i + 1] = As + 1 but li ≤ As, then zlen[PSA[rank [i + 1] − 1]] = As ≥ li.
Hence in either case, zlen[PSA[rank [i + 1] − 1]] ≥ li, and then li+1 ≥ li. ⊓⊔

Lemma 7 helps to compute li+1 in the case of pv(s[j + 1 : n]) ≻ pv(s[i + 1 : n]).
Fig. 2 shows our algorithm for constructing PLCP array.

4 Computational Experiments

We compare our algorithms and naive algorithms on randomly generated text,
and some files taken from the The Canterbury Corpus2, and those used in [19]3

(Lightweight). All experiments were conducted on an Apple Mac Pro (Early
2008) with 3.2GHZ dual core Xeons and 18GB of memory, running MacOSX
10.5 Leopard. Programs were written in the C language and compiled with the
gcc compiler and -O3 option.
2 http://corpus.canterbury.ac.nz/
3 http://web.unipmn.it/∼manzini/lightweight/corpus/
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Table 2. Running times for random strings of length n and alphabet size = 255.

p-suffix array PLCP array

n Radix Bucket Qsort P-Kasai Naive avg lcp avg zlen %C

1024 0.000099 0.000170 0.000710 0.000023 0.000207 23.6 19.4 7.58
2048 0.000241 0.000319 0.001672 0.000050 0.000374 25.5 19.6 7.57
4096 0.000689 0.000778 0.004032 0.000147 0.000595 27.1 19.7 7.66
8192 0.001759 0.001840 0.009391 0.000304 0.001116 28.1 19.6 7.73

16384 0.003840 0.003908 0.018881 0.000629 0.002363 29.0 19.7 7.71
32768 0.009518 0.009440 0.042851 0.001291 0.004697 29.6 19.6 7.73
65536 0.022920 0.022261 0.096403 0.002856 0.010423 30.3 19.7 7.72

131072 0.050810 0.048990 0.201429 0.006450 0.020761 31.0 19.7 7.73
262144 0.124608 0.120097 0.458788 0.015064 0.039021 31.9 19.7 7.72
524288 0.287857 0.276315 0.998540 0.062928 0.083262 33.0 19.7 7.72

Table 2 shows results on random data for various text lengths, and a fixed
alphabet size of 255. Table 3 shows results on random data for various alphabet
sizes and a fixed text length of 1,000,000. Table 4 shows results on various texts
from several corpora. Radix and Bucket denote the two alternatives for the
coarse sorting in Step 3. We use a standard quick sort on strings for the sorting
algorithm of Step 4. Qsort denotes a naive algorithm using a standard quick sort
on all suffixes. For the PLCP array, we compare the P-Kasai algorithm and a
naive algorithm. %C denotes the percentage of type C suffixes. The running times
were measured by user time, averaged over 100 and 10 iterations for random
strings and files, respectively. In the tables, they are presented in second.

Our algorithms are clearly much faster than naive methods except for the
PLCP computation when the average lcp is small.

5 Conclusion and Future Work

Using several characteristics of parameterized suffixes, we introduced techniques
to speed up the direct construction of parameterized suffix arrays and PLCP
arrays. The worst case time complexity of sorting the suffixes is O(n3) when using
a standard Quicksort on strings. For example, considering pv(abbaabb . . .) =
0013131 . . ., gives one type B block of size n/2 requiring O(n3) time. However,
since the size of the blocks to be sorted is reduced considerably compared to
n, the total time required for our algorithm is much faster than a näıve use of
Quicksort.

From a theoretical viewpoint, a näıve radix sort would give an O(n2) time
algorithm. It is an open problem if there exists better worst-case time algorithms
for p-suffix array construction. Similarly, for PLCP arrays, the P-Kasai algorithm
runs in O(n2) time. However, we do not know if this bound is tight, or if there
exist linear time algorithms for PLCP array construction.
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Table 3. Running times for random strings of length 1,000,000 and alphabet size π.

p-suffix array PLCP array

π Radix Bucket Qsort P-Kasai Naive avg lcp avg zlen %C

2 0.351 0.327 1.144 0.203 0.124 19.8 1.5 75.0
4 0.387 0.363 0.851 0.228 0.109 11.5 2.2 55.5
8 0.430 0.404 0.839 0.242 0.112 10.7 3.2 40.6

16 0.493 0.459 0.975 0.239 0.121 12.2 4.7 29.4
32 0.522 0.495 1.114 0.225 0.131 15.1 6.8 21.2
64 0.543 0.528 1.346 0.204 0.145 19.4 9.7 15.2

128 0.584 0.572 1.645 0.187 0.161 25.7 13.9 10.8
256 0.633 0.613 2.111 0.170 0.186 34.2 19.7 7.70
512 0.697 0.688 2.708 0.159 0.224 45.1 28.0 5.48

1024 0.754 0.754 3.570 0.147 0.264 61.1 39.8 3.89
2048 0.851 0.825 4.688 0.141 0.360 84.8 56.4 2.75
4096 0.940 0.921 6.309 0.132 0.454 118.6 79.8 1.95
8192 0.984 0.990 8.373 0.127 0.628 165.8 113.1 1.38

16384 1.039 1.068 11.570 0.124 0.864 230.3 160.0 0.978
32768 1.289 1.074 15.510 0.119 1.266 317.0 226.2 0.691
65536 0.967 1.070 21.972 0.115 1.896 430.8 320.0 0.489

131072 0.834 0.992 30.362 0.112 3.058 578.2 453.5 0.345
262144 0.667 0.946 42.425 0.111 5.780 766.4 640.4 0.245
524288 0.509 0.941 58.855 0.105 9.795 1019.7 907.2 0.173
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