Reverse Engineering of Data Structures on Strings Tomohiro

Department of Informatics, Kyushu University, Japan

Foundation of string processing.

etc.

Reverse Problem on Palindromic Structures of Strings

Maximal Palindromes

- If w[i..j] is a palindrome and w[i-1..j+1] is not a palindrome, w[i..j] is called a maximal palindrome at center $\frac{i+j}{2}$ and denoted as $(\frac{i+j}{2}, \frac{j-i+1}{2})$. С а b
- \blacksquare *Pals*(*w*) : the set of maximal palindromes of *w*.

		1		2	3		4	ļ	5		(6	7	7	8	3	9	
W		а	k	C	b		а		С		а		b		b		b	
	(0.5	5,0) (1.	5,0)	(2.5	5, 2)	(3.5	5, 0)	(4.5	5, 0)	(5.5	5, 0)	(6.5	5, 0)	(7.5	5, 1)	(8.5	, 1)	(9.5
Pals(w)		(1, 0.5)	(2,	0.5)	(3, 0).5)	(4, (0.5)	(5, 3	3.5)	(6,	0.5)	(7,	0.5)	(8,	1.5)	(9,0).5)
🔶 F	For a string w of length n, $ Pals(w) = 2n+1$.																	

From a Viewpoint of Reverse Engineering

- We proposed a linear time/space algorithm to solve the reverse problem on palindromic structures [3].
 - Our algorithm is the reversal of Manacher's algorithm which computes Pals(w) of a given string w in linear time.
- We give a characterization of the valid set of maximal palindromes :

an input P is a valid set of maximal palindromes if and only if the following lemma holds.

For any $(C, R) \in P$ and $D \in \{0.5, 1.0, 1.5, \dots, R\}$, the conditions of Manacher's Lemma hold.

Reverse Problem on Parameterized Border Arrays

Parameterized Matching Problem (P-Matching Problem) [Baker, `96]

Given text *Txt* and pattern *Ptn*, answer all positions in *Txt* that p-match *Ptn*.

String s and t are said to p-match if s can be transformed into t by a bijection on the alphabet. e.g. abbca \leftrightarrow baacb by a \leftrightarrow b, b \leftrightarrow a, c \leftrightarrow c. abbca \leftrightarrow caabc by a \leftrightarrow c, b \leftrightarrow a, c \leftrightarrow b.

Txt	а	b a	a a	С	b	а	b	а	а	b	b	С	а	а	b	С	b	b	а	b	b	С	а	b	b	С	а	а	Ptr	ı	а	b	b	С	а
		a k	b b	С	а				а	b	b	C	a						а	b	b	С	а												
												a l	b	b	C	а							а	b	b	С	а								

Parameterized Border Array

(P-Border Array) [Idury and Schäffer, `96]

Using the p-border array of *Ptn*, we can solve p-matching problem in O(|Txt|+|Ptn|) time.

 $j (0 \le j < i)$ is said to be a p-border of string s[1..i]if the length *j* prefix and suffix of *s*[1..*i*] p-match.

T. I, S. Inenaga, H. Bannai, M. Takeda, Counting parameterized border arrays for a binary alphabet, in: Proc. LATA'09, Vol. 5457 of LNCS, 2009, pp. 422–433. 1. T. I, S. Inenaga, H. Bannai, M. Takeda, Verifying a parameterized border array in $O(n^{1.5})$ time, in: Proc. CPM'10, Vol. 6129 of LNCS, 2010, pp. 238–250. 2.

3. <u>T. I</u>, S. Inenaga, H. Bannai, M. Takeda, Counting and Verifying Maximal Palindromes, in: Proc. SPIRE'10, Vol. 6393 of LNCS, 2010, pp. 135–146.

Is "0 1 2 1 2 3 3 4 2" a valid p-border array?

When $\beta[1..i]$ is a valid p-border array and $m \in N$, what is the if-and-only-if condition for $\beta[1..i]m$ to be a valid p-border array?

\blacksquare B(i) : the set of the p-borders of s[1..i].

• For any s[1..i] whose p-border array is $\beta[1..i]$, $B(i) = \{\beta^{1}[i], \beta^{2}[i], \beta^{3}[i], \dots, 1, 0\}.$ $\beta^{k}[i] = \begin{cases} \beta[i] & , k = 1, \\ \beta[\beta^{k-1}[i]] & , k > 1 \text{ and } \beta^{k-1}[i] \ge 1. \end{cases}$ 1 2 3 4 5 6 7 8 9 10 11 12 13

e.g. $\beta[1..13]: 0121234534567$ $B(13) = \{7, 4, 1, 0\}$

Conflict positions

For an Unbounded Alphabet [2]
Solution We cannot verify an extension only from $\beta[1i]$.
Naïvely, we need to search on all prev arrays.
$prev(s)[i] = \begin{cases} 0 & , \forall 1 \le j < i , s[i] \ne s[j], \\ i - k & , k = \max\{j \mid s[i] = s[j], 1 \le j < i \}. \end{cases}$
$prev(abaabab)$ $prev(s) = prev(t) \Rightarrow$

Everything is String.

The p-border array of a string s[1..n] is an array with the longest p-borders of length *i* prefixes (i = 1, ..., n). e.g. s[1..n] = a b a a c a c c $\beta[1..n] = 0 \ 1 \ 2 \ 1 \ 2 \ 3 \ 3 \ 4$

i	s[1 <i>i</i>]	longest p-matching pref/suf	β[<i>i</i>]
1	а	$3 \leftrightarrow 3$	0
2	a b	$a \leftrightarrow b$	1
3	a b a	ab↔ba	2
4	a b a a	a ↔a	1
5	abaac	ab ↔ac	2
6	abaaca	aba ↔aca	3
7	abaacac	aba ↔cac	3
8	abaacacc	abaa ↔cacc	4

We proposed a linear time and space algorithm.

Takeda-Bannai Laboratory