Reverse Engineering of Data Structures on Strings Tomohiro I

Department of Informatics, Kyushu University, Japan

$\square \Sigma$: alphabet (a set of characters).
$\square s \in \Sigma^{*}$: string (a sequence of characters).
- When $s=x y, x$ is called a prefix of s, y is called a suffix of s.

Data Structures for String Processing

■ There are many data structures for processing strings efficiently such as suffix arrays and border arrays.

Foundation of string processing.

\square
Direct Problem
string \Rightarrow data structure

- Compute the data structure of a given string.

> Related Work Reverse problems on
> border array [Franek et al. 2002] [Duval et al. 2005]
> suffix array
> - Duval and Lefebure, 2002] - [Bannai et al. , 2003] - [Schürmann et al. , 2005]
> - directed acyclic word graph [Bannai etal. 2003]
> prefix table
> [[clement et al., 2009]
> cover array
> [Crochemore et al. ,2010]
> etc.

Reverse Problem on Palindromic Structures of Strings

Maximal Palindromes

\square A palindrome is a symmetric string that reads the same forward and backward.

If $w[i . . j]$ is a palindrome and $w[i-1 . . j+1]$ is not a palindrome, $w[i . . j]$ is called a maximal palindrome at center $\frac{i+j}{2}$ and denoted as $\left(\frac{i+j}{2}, \frac{j-i+1}{2}\right)$.

- Pals (w) : the set of maximal palindromes of w.
$\operatorname{Pals}(w)^{(0.5,0)(1.5,0)(2.5,2)(3.5,0)(4.5,0)(5.5,0)(6.5,0)(7.5,1)(8.5,1)(9.5,0)}$ $(1,0.5)(2,0.5)(3,0.5)(4,0.5)(5,3.5)(6,0.5)(7,0.5)(8,1.5)(9,0.5)$
- For a string w of length $n,|\operatorname{Pals}(w)|=2 n+1$
$(0.5,0)(1.5,0)(2.5,2)(3.5,0)(4.5,0)(5.5,0)(6.5,0)(7.5,1)(8.5,1)(9.5,0)$
$(1,0.5)(2,0.5)(3,0.5)(4,0.5)(5,5.5)((6,0.5)(7,0.5)(8,1.5)(9,0.5)$ a valid set of maximal palindromes?

Manacher's Lemma [Manacher, `75]

\square For any $(C, R) \in \operatorname{Pals}(w)$ and $D \in\{0.5,1.0,1.5, \ldots, R\}$, one of the following conditions holds.

From a Viewpoint of Reverse Engineering
\square We proposed a linear time/space algorithm to solve the reverse problem on palindromic structures [3].

- Our algorithm is the reversal of Manacher's algorithm which computes $\operatorname{Pals}(w)$ of a given string w in linear time
- We give a characterization of the valid set of maximal palindromes
an input P is a valid set of maximal palindromes if and only if the following lemma holds.
For any $(C, R) \in P$ and $D \in\{0.5,1.0,1.5, \ldots, R\}$, the conditions of Manacher's Lemma hold.

Reverse Problem on Parameterized Border Arrays

Parameterized Matching Problem
(P-Matching Problem) [Baker, `96]

- Given text Txt and pattern Ptn,
answer all positions in $T x t$ that p-match Ptn.
String s and t are said to p -match if s can be transformed into t by a bijection on the alphabet. e.g. $a b b c a \leftrightarrow$ baacb by $a \leftrightarrow b, b \leftrightarrow a, c \leftrightarrow c$. abbca $\leftrightarrow c$ caabc by $a \leftrightarrow c, b \leftrightarrow a, c \leftrightarrow b$.
 abbca abbca abbca
abbca abbca

Parameterized Border Array

(P-Border Array) [ldury and Schäfer, ${ }^{96}$]
■ Using the p-border array of Ptn, we can solve p-matching problem in $O(|T x t|+|P t n|)$ time. $j(0 \leq j<i)$ is said to be a p -border of string $s[1 . . i]$ if the length j prefix and suffix of $s[1 . . i] \mathrm{p}$-match. e.g. $s[1 . . i]=\mathrm{abacacbcba}$

- The p-border array of a string $s[1 . . n]$ is an array with the longest p -borders of length i prefixes ($i=1$ e.g. $s[1 . . n]=\mathrm{aba}$ acacc

T.1, S. Inenaga, H. Bannai, M. Takeda, Verifying parameterized border arrays for a binary alphabet, in: Proc. LAATA 09 , Vol. 445 of LNCS, 2009, pp. $422-433$ T.1, S. Inenaga, H. Bannai, M. Takeda, Verifying a parameterized border array in $O\left(n^{1.5}\right)$ time, in: Proc. CPM 110 , Vol. 6129 of LNCS, 2010, pp. 238-250.

Is "0 12123342 " a valid p-border array?
When $\beta[1 . . i]$ is a valid p-border array and $m \in N$, what is the if-and-only-if condition for $\beta[1 . . i] m$ to be a valid p-border array?

For a Binary Alphabet [1]
■ We can verify an extension only from $\beta[1 . . i]$
The following m_{1} and m_{2} are the valid extensions. $m_{1}=\beta[i]+1$,
$\beta^{l}[i]+1$ if $\beta\left[\beta^{l-1}[i]+1\right] \neq \beta^{l}[i]+1$ for some $1<l<k^{\prime}$ and $m_{2}= \begin{cases}\beta^{l}[i]+1 & \text { if } \beta\left[\beta^{h-1}[i]+1\right] \neq \beta^{h}[i]+1 \text { for some } 1<l<k \text { and } \\ 1 & \text { otherwise } .\end{cases}$

- We proposed a linear time and space algorithm
\qquad
$O\left(n^{1.5}\right)$-time verification

For an Unbounded Alphabet [2]
■ We cannot verify an extension only from $\beta[1 . i]$ Naïvely, we need to search on all prev arrays.

$$
\left.\begin{array}{l}
\operatorname{prev}(s)[i]= \begin{cases}0 & , \forall 1 \leq j<i, s[i] \neq s[j], \\
i-k & , k=\max \{j \mid s[i]=s[j], 1 \leq j<i\}\end{cases} \\
\operatorname{prev}(\text { abaabab }) \\
\quad=0021322
\end{array} \begin{array}{r}
\operatorname{prev}(s)=\operatorname{prev}(t) \Rightarrow \\
s \text { and } t \text { have the same } \\
p \text {-border array. }
\end{array}\right] .
$$

$\checkmark \mathrm{C}(j)$: the set of conflict positions with j

P_{β} : the set of prev arrays whose p -border arrays are β. \checkmark zeros $(p[i . . j])$: the number of zeros in $p[i . . j]$.

$m-1 \in \mathrm{~B}(i)$ and

($i+1$ is a conflict position
$\Rightarrow\left(\exists p[1 . . i] \in \mathrm{P}_{\beta[1 . . i]} \mathrm{s} . \mathrm{t} . p[m]=0\right.$ and
$\left.\left.\left(\exists c^{\prime} \in \mathrm{C}(i+1), p\left[c^{\prime}\right]=0 \Rightarrow \operatorname{zeros}\left(p\left[m . . c^{\prime}-1\right]\right) \geq|\mathrm{C}(i+1)|\right)\right)\right)$.
By the above lemma, we can reduce the problem from searching on prev arrays to searching on $\{0, \star\}^{*}$
$O\left(n\right.$-th Bell number)-time $O\left(2^{n}\right)$-time $\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}$

