
Takeda-Bannai LaboratoryEverything is String.

to provide a data set for testing software efficiently.

to reveal the combinatorial properties of the data structure.

Reverse Engineering of Data Structures on Strings
Tomohiro I

Department of Informatics, Kyushu University, Japan

Reverse Problem on Parameterized Border Arrays

Long Way to O(n1.5)-time Verification

5 6 7 8 9

16 17 1815

If-and-only-if condition for
β[1..i]m to be a valid p-border array of p[1..i1]P.

20 19
22

21

O(n1.5)-time verification

23

12
13

2

14

1

11

24

3

border array
• [Franek et al. ,2002]

• [Duval et al. ,2005]

suffix array
• [Duval and Lefebvre, 2002]

• [Bannai et al. , 2003]

• [Schürmann et al. , 2005]

directed acyclic word graph
• [Bannai et al. ,2003]

prefix table
• [Clement et al. ,2009]

cover array
• [Crochemore et al. ,2010]

etc.

  : alphabet (a set of characters).
 s  * : string (a sequence of characters).
When s  xy,

Reverse problems on

Parameterized Matching Problem
(P-Matching Problem) [Baker, `96]

a b a a c b a b a a b b c a a b c b b a b b c a b b c a a a b b c aTxt Ptn

a b b c aa b b c a

a b b c a

a b b c a

a b b c a

Parameterized Border Array
(P-Border Array) [Idury and Schäffer, `96]

Data Structures for String Processing

j (0  j < i) is said to be a p-border of string s[1..i]

if the length j prefix and suffix of s[1..i] p-match.
e.g. s[1..i]  a b a c a c b c b a

 Direct Problem

 Compute the data structure of a given string.

 Reverse Problem data structure string

 Compute a string which has a given data structure.

For a Binary Alphabet [1] For an Unbounded Alphabet [2]

4

If-and-only-if condition for
β[1..i]m to be a valid p-border array of some string.

10

MotivationsTheoretical Practical

 We can verify an extension only from β[1..i].

 We proposed an O(n1.5)-time O(n)-space algorithm.

m 1B(i) and

(i 1 is a conflict position

⇒(p[1..i]  P[1..i] s.t. p[m]  0 and

(c’C(i1), p[c’]  0 ⇒ zeros(p[m..c’  1]) C(i1)))).

0 ,  1  j  i , s[i]  s[j],

i  k , k  max{ j | s[i]  s[j], 1  j  i }.
prev(s)[i] 

1. T. I, S. Inenaga, H. Bannai, M. Takeda, Counting parameterized border arrays for a binary alphabet, in: Proc. LATA’09, Vol. 5457 of LNCS, 2009, pp. 422–433.
2. T. I, S. Inenaga, H. Bannai, M. Takeda, Verifying a parameterized border array in O(n1.5) time, in: Proc. CPM’10, Vol. 6129 of LNCS, 2010, pp. 238–250.

Is “0 1 2 1 2 3 3 4 2” a valid p-border array?

prev(abaabab)

=0021322

prev(s)  prev(t) 

s and t have the same
p-border array.

By the above lemma, we can reduce the problem
from searching on prev arrays to searching on 0,★.

★ means non-zero

O(n-th Bell number)-time O(2n)-timePruning techniques for an unbounded alphabet.

 We proposed a linear time and space algorithm.

When β[1..i] is a valid p-border array and m  N, what is the
if-and-only-if condition for β[1..i]m to be a valid p-border array?

m2 

The following m1 and m2 are the valid extensions.
m1  β[i]  1,

βl [i]  1

1

if β[βl 1[i]  1]  βl [i]  1 for some 1  l  k’ and
β[βh 1[i]  1]  βh [i]  1 for some 1  h  l,

otherwise.

data structurestring

 We cannot verify an extension only from β[1..i].

Naïvely, we need to search on all prev arrays.

 There are many data structures for processing strings
efficiently such as suffix arrays and border arrays.

Related Work

[1..i] : m m

c c’m

 B(i) : the set of the p-borders of s[1..i].

C(j) : the set of conflict positions with j.
P : the set of prev arrays whose p-border arrays are .
zeros(p[i..j]) : the number of zeros in p[i..j].

 Given text Txt and pattern Ptn,
answer all positions in Txt that p-match Ptn.

String s and t are said to p-match if s can be
transformed into t by a bijection on the alphabet.

abbca  baacb by ab, ba, cc.
abbca  caabc by ac, ba, cb.

e.g.

 Using the p-border array of Ptn, we can solve
p-matching problem in O(|Txt|+|Ptn|) time.

i s[1..i] longest p-matching pref/suf [i]

1 a   0

2 a b a  b 1

3 a b a a b  b a 2

4 a b a a a  a 1

5 a b a a c a b  a c 2

6 a b a a c a a b a  a c a 3

7 a b a a c a c a b a  c a c 3

8 a b a a c a c c a b a a  c a c c 4

 The p-border array of a string s[1..n] is an array with
the longest p-borders of length i prefixes (i = 1,  , n).

e.g. s[1..n]  a b a a c a c c
[1..n]  0 1 2 1 2 3 3 4

Reverse Problem on Palindromic Structures of Strings

Maximal Palindromes

n e v e r o d d o r e v e n

7 7

1 2 3 4 5 6 7 8 9

a b b a c a b b b

(0.5, 0) (1.5, 0) (2.5, 2) (3.5, 0) (4.5, 0) (5.5, 0) (6.5, 0) (7.5, 1) (8.5, 1) (9.5, 0)

(1, 0.5) (2, 0.5) (3, 0.5) (4, 0.5) (5, 3.5) (6, 0.5) (7, 0.5) (8, 1.5) (9, 0.5)

w

w : a c b b c b a a b c b b a b

i j

2

1ij
2

ji

2

1ij

w

C

D DRl

Rl

Rr

Rl

a b b a

a b
b

b

c

b

a a a b

For any (C, R)P and D0.5, 1.0, 1.5, … , R,
the conditions of Manacher’s Lemma hold.

(0.5, 0) (1.5, 0) (2.5, 2) (3.5, 0) (4.5, 0) (5.5, 0) (6.5, 0) (7.5, 1) (8.5, 1) (9.5, 0)

(1, 0.5) (2, 0.5) (3, 0.5) (4, 0.5) (5, 3.5) (6, 0.5) (7, 0.5) (8, 1.5) (9, 0.5) a valid set of maximal palindromes?

3. T. I, S. Inenaga, H. Bannai, M. Takeda, Counting and Verifying Maximal Palindromes, in: Proc. SPIRE’10, Vol. 6393 of LNCS, 2010, pp. 135–146.

Manacher’s Lemma [Manacher, `75] From a Viewpoint of Reverse Engineering
 We proposed a linear time/space algorithm to solve

the reverse problem on palindromic structures [3].

 A palindrome is a symmetric string that reads the
same forward and backward.

 If w[i..j] is a palindrome and w[i1..j1] is not a
palindrome, w[i..j] is called a maximal palindrome
at center and denoted as (,).

2

ji

2

ji

2

1ij

 Pals(w) : the set of maximal palindromes of w.

 For any (C, R)Pals(w) and D0.5, 1.0, 1.5, … ,R,
one of the following conditions holds.

Pals(w)

(CD, Rl)  Pals(w).
(CD, Rr)  Pals(w).

Rr  Rl

Rr  R  D

Rr  R  D

if Rl  R  D

if Rl  R  D

if Rl  R  D

(1)
(2)
(3)

R R

Rr

Rr

(1)

(2)

(3)




0 !
1

k k
k

e

n

x is called a prefix of s,
y is called a suffix of s.

 Conflict positions

Foundation of string processing.

 We give a characterization of the valid set of
maximal palindromes :
an input P is a valid set of maximal palindromes
if and only if the following lemma holds.

 For any c, c’ (1  c  c’ i), if [c]  [c’] and c1 B(c’1),

c and c’ are said to be in conflict with each other.

m m m

c1c1

 For any s[1..i] whose p-border array is [1..i],

B(i)  {1[i], 2[i], 3[i], … , 1, 0}.

b c b aa b a c
b aa b

aa

k[i] 

e.g. [1..13] :

[i]

[k1[i]]

, k  1,

, k  1 and k1[i]  1.

0 1 2 1 2 3 4 5 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13

B(13)  {7, 4, 1, 0}

 Our algorithm is the reversal of Manacher’s algorithm
which computes Pals(w) of a given string w in linear time.

: radius

e.g. w :

2

w

 For a string w of length n, Pals(w)  2n1.

4

2

1
0

Is

