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Abstract. The position heap is a text indexing structure for a single
text string, recently proposed by Ehrenfeucht et al. [Position heaps: A
simple and dynamic text indexing data structure, Journal of Discrete
Algorithms, 9(1):100-121, 2011]. In this paper we introduce the position
heap for a set of strings, and propose an efficient algorithm to construct
the position heap for a set of strings which is given as a trie. For a
fixed alphabet our algorithm runs in time linear in the size of the trie.
We also show that the position heap can be efficiently updated after
addition/removal of a leaf of the input trie.

1 Introduction

Classical text indexing structures such as suffix trees [17], suffix arrays [14],
directed acyclic word graphs [6], and compact directed acyclic word graphs [5],
allow us to find occurrences of a given pattern string in a text efficiently. Linear-
time construction algorithms for these structures exist (e.g. [16, 11, 6, 10]).

Very recently, a new, alternative text indexing structure called position heaps
have been proposed [9]. Like the above classical indexing structures, the position
heap of a text t allows us to find the occurrences of a given pattern p in t in
O(m+r) time, where m is the length of p and r is the number of occurrences of p
in t. A linear-time algorithm to construct position heaps is also presented in [9],
which is based on Weiner’s suffix tree construction algorithm [17]. An on-line
linear-time algorithm for constructing position heaps is proposed in [13], which
is based on Ukkonen’s on-line suffix tree construction algorithm [16].

In this paper, we extend the position heap data structure to the case where
the input is a set W of strings. The position heap of W is denoted by PH (W ). We
assume that the input set W of strings is represented as a trie. Since the trie is a
compact representation of W , it is challenging to construct PH (W ) in time only
proportional to the size of the trie, rather than to the total length of the strings
in W . If n is the size of the input trie, then we propose an O(n)-time algorithm
to construct PH (W ) assuming that the alphabet is fixed. We also show that we
can augment PH (W ) in O(n) time and space so that the occurrences of a given
pattern string in the input trie can be computed in O(m + r) time, where m is
the pattern length and r is the number of occurrences to report.



A distinction between position heaps and the other classical indexing struc-
tures is that position heaps allow us efficient edit operations on arbitrary posi-
tions of the input text [9]. In this paper, we show that it is possible to update in
O(h log n) time the position heap for a set of strings after addition/removal of a
leaf of the input trie, where h is the height of the position heap. Although h can
be as large as O(n), the significance of our algorithm is that when h = o(n/ log n)
the position heap can be updated in o(n) time, while a näıve approach of con-
structing the position heap for the edited trie from scratch requires Θ(n) time.

Related work. Computing suffix trees for a set of strings represented as a
trie was first considered by Kosaraju [12], and he introduced an O(n log n)-time
construction algorithm. Later, an improved algorithm that works in O(n) time
for a fixed alphabet was proposed by Breslauer [7]. An O(n)-time construction
algorithm for integer alphabets is also known [15]. Our algorithm to construct
position heap for a trie is based on the algorithms of [9] and [7].

2 Preliminaries

2.1 Notations on strings

Let Σ be an alphabet. Throughout the paper we assume that Σ is fixed. An
element of Σ∗ is called a string. The length of a string w is denoted by |w|. The
empty string ε is a string of length 0, namely, |ε| = 0. For a string w = xyz, x,
y and z are called a prefix, substring, and suffix of w, respectively. The set of
prefixes, substrings, and suffixes of a string w is denoted by Prefix (w), Substr(w),
and Suffix (w), respectively. The i-th character of a string w is denoted by w[i]
for 1 ≤ i ≤ |w|, and the substring of a string w that begins at position i and
ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience, let
w[i..j] = ε if j < i. For any string w, let wR denote the reversed string of w, i.e.,
wR = w[|w|]w[|w| − 1] · · ·w[1]. For any character a ∈ Σ, we use the following
convention that a · a−1 = ε. Let |a−1| = −1.

2.2 Position heaps for multiple strings

Let S = 〈w1, w2, . . . , wk〉 be a sequence of strings such that for any 1 < i ≤ k,
wi 6∈ Prefix (wj) for any 1 ≤ j < i. For convenience, we assume that w1 = ε.

Definition 1 (Sequence hash trees [8]). The sequence hash tree of a se-
quence S = 〈w1, w2, . . . , wk〉 of strings, denoted SHT (S), is a trie structure that
is recursively defined as follows: Let SHT (S)i = (Vi, Ei). Then

SHT (S)i =

{
({ε}, ∅) if i = 1,

(Vi−1 ∪ {pi}, Ei−1 ∪ {(qi, c, pi)}) if 1 ≤ i ≤ k,

where qi is the longest prefix of wi which satisfies qi ∈ Vi−1, c = wi[|qi|+1], and
pi is the shortest prefix of wi which satisfies pi /∈ Vi−1.
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Note that since we have assumed that each wi ∈ S is not a prefix of wj for
any 1 ≤ j < i, the new node pi and new edge (qi, c, pi) always exist for each
1 ≤ i ≤ k. Clearly SHT (S) contains k nodes (including the root).
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Fig. 1. PH (W ) for W = {baa, ababa, abba,
bbba}, where Suffix≺(W ) = 〈ε, a, aa, ba, baa,
aba, bba, baba, abba, bbba, ababa〉. The node la-
beled with integer i represents pi.

Let W = {w1, w2, . . . , wk}
be a set of strings such that
wi /∈ Suffix (wj) for any 1 ≤ i 6=
j ≤ k. Let Suffix (W ) be the set
of suffixes of strings in W , i.e.,
Suffix (W ) =

∪k
i=1 Suffix (wi).

Define the order ≺ on Σ∗ by
x ≺ y iff |x| < |y|, or
|x| = |y| and xR is lexico-
graphically smaller than yR. Let
Suffix≺(W ) be the sequence of
strings in Suffix (W ) that are or-
dered w.r.t. ≺.

Definition 2 (Position heaps for multiple strings). The position heap for
a set W of strings, denoted PH (W ), is the sequence hash tree of Suffix≺(W ),
i.e., PH (W ) = SHT (Suffix≺(W )).

Lemma 1. For any set W of strings, let PH (W ) = (V, E). For any v ∈ V ,
Substr(v) ⊆ V .

Proof. For any v ∈ V with |v| < 2, it is clear that {ε, v} = Substr(v) ⊆ V . In
what follows, we consider v ∈ V with |v| ≥ 2. It suffices to show that v[2..|v|] ∈ V
since every prefix of v exists as an ancestor of v and any other substring of v
can be regarded as a prefix of a suffix of v. By Definition 2, there exist strings
x2 ≺ x3 · · · ≺ x|v| in Suffix≺(W ) such that xi[1..i] = v[1..i] for any 2 ≤ i ≤ |v|.
It follows from the definition of ≺ that there exist strings y2 ≺ y3 · · · ≺ y|v| in
Suffix≺(W ) such that yi = xi[2..|xi|] for any 2 ≤ i ≤ |v|. Since yi[1..i − 1] =
xi[2..i] = v[2..i] for any 2 ≤ i ≤ |v|, it is guaranteed that the node v[2..i] exists
in V at least after yi is inserted to the position heap. Hence v[2..|v|] ∈ V and
the statement holds. ut

2.3 Position heaps and common suffix tries

Our goal is to efficiently construct position heaps for multiple strings. In addition,
in our scenario the input strings are given in terms of the following trie:

Definition 3 (Common-suffix tries). The common-suffix trie of a set W of
strings, denoted CST (W ), is a reversed trie such that

1. each edge is labeled with a character in Σ;
2. any two in-coming edges of any node v are labeled with distinct characters;
3. each node v is associated with a string that is obtained by concatenating the

edge labels in the path from v to the root;
4. for each string w ∈ W there exists a unique leaf with which w is associated.

An example of CST (W ) is illustrated in Fig. 2.
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Fig. 2. CST (W ) for W = {baa, ababa,
abba, bbba}. Each node u is associated
with id(u).

Let n be the number of nodes
in CST (W ). Clearly, n equals to the
cardinality of Suffix (W ) (including
the empty string). Hence, CST (W )
is a natural representation of the set
Suffix (W ). If N is the total length of
strings in W , then n ≤ N+1 holds. On
the other hand, when the strings in W
share many suffixes, then N = Θ(n2)
(e.g., consider the set of strings {abi |
1 ≤ i ≤ n}). Therefore, CST (W ) can
be regarded as a compact representa-
tion of the set W of strings.

Our problem of interest is the following:

Problem 1 (Constructing position heap for trie). Given CST (W ) for a set W of
strings, construct PH (W ).

For any 1 ≤ i ≤ n, let si denote the ith suffix of Suffix≺(W ). Clearly there is
a one-to-one correspondence between the elements of Suffix≺(W ) and the nodes
of CST (W ). Hence, if the path from a node to the root spells out si, then we
identify this node with si. The parent of node si, denoted parent(si), is defined
to be si[2..|si|] (recall that CST (W ) is a reversed trie). Any node in the path
from si to the root of CST (W ) is an ancestor of si.

Let id(si) = i. Given CST (W ) of size n, we can sort the children of each node
in lexicographical order in a total of O(n) time, for a fixed alphabet. Then id(si)
for all nodes si of CST (W ) can be readily obtained by a standard breadth-first
traversal of CST (W ).

For any 1 ≤ i ≤ n, where n is the number of nodes of CST (W ), let CST (W )i

denote the subtree of CST (W ) consisting of nodes sj with 1 ≤ j ≤ i. PH (W )i is
the position heap for CST (W )i for each 1 ≤ i ≤ n, and in our algorithm which
follows, we construct PH (W ) incrementally, in increasing order of i.

3 Construction of position heaps for common-suffix tries

In this section we propose an algorithm that constructs position heaps for
common-suffix tries in linear time. Our algorithm is based on a linear time
algorithm of Breslauer [7] which constructs suffix trees for common-suffix tries.
His algorithm is based on Weiner’s linear-time suffix tree construction algorithm
for a single string [17]. Below we introduce the suffix link for each node of a
position heap, which is an analogue of the suffix link for each node of a suffix
tree.

Definition 4 (Suffix links). For any node v of PH (W ) = (V, E) and character
a ∈ Σ, let

slink(a, v) =

{
av if av ∈ V ,

undefined otherwise.
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Fig. 3. The broken arrows in the the left (resp. right) diagram show slink(a, v) (resp.
slink(b, v)) for PH (W ) of Fig. 1.

Fig. 3 shows suffix links for the position heap of Fig. 1.
For convenience, we annotate the position heap with an auxiliary node ⊥

that represents a−1 for any character a ∈ Σ, and assume that there are |Σ|
edges from ⊥ to the root ε, each of which is labeled with a unique character in
Σ. Then slink(a,⊥) = ε for any character a ∈ Σ.

We will use the following data structure that maintains a rooted semi-dynamic
tree with marked/unmarked nodes such that the nearest marked ancestor in the
path from a given node to the root can be found very efficiently.

Lemma 2 ([18, 2]). A semi-dynamic rooted tree can be maintained in linear
space so that the following operations are supported in amortized constant time:
(1) find the nearest marked ancestor of any node; (2) insert an unmarked node;
(3) mark an unmarked node.

We define the nearest marked ancestor of a node of position heaps as follows:

Definition 5 (Nearest marked ancestor on position heap). For any node
v of PH (W ) = (V,E) and character a ∈ Σ, let nma(a, v) = u be the lowest
ancestor of v such that slink(a, u) ∈ V .

To answer the query for nma(a, v) in O(1) time given any node u and any char-
acter a ∈ Σ, we construct |Σ| copies of PH (W ) such that each copy maintains
nma(a, v) for all its node v and a character a ∈ Σ. In each copy of PH (W )
w.r.t. a ∈ Σ, we create exactly one edge between ⊥ and the root that is labeled
with a, and one suffix link for a between them as well, since these suffice for
this copy tree. This way each copy tree forms a tree, and semi-dynamic nearest
marked ancestor queries can be maintained as was mentioned in Lemma 2. Since
Σ is fixed, we need only a constant number of copies, thus our data structure of
nma(a, v) queries requires a total of O(n) space by Lemma 2.

In the example of Fig. 3, nma(a, 9) = 2, nma(b, 9) = 6, and so on.

Lemma 3 (Level ancestor query [4, 3]). Given a static rooted tree, we can
preprocess the tree in linear time and space so that the `th node in the path from
any node to the root can be found in O(1) time for any ` ≥ 0, if such exists.
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For any node u of CST (W ) and integer ` ≥ 0, let la(u, `) denote the `th ancestor
of u in the path from u to the root. By the above lemma la(u, `) can be found
in O(1) time after O(n) time and space preprocessing.

ph

pk

pj

y

x

b

ay
b

a

a

Fig. 4. Illustration for Lemma 4. The straight
lines represent edges, and the wavy lines represent
paths. The broken arrows represent suffix links
w.r.t. character a.

Assume that for 1 < i ≤
n we have already constructed
PH (W )i−1 together with the
suffix links and the |Σ| copies
of PH (W )i−1 for nma query,
and that we are updating them
w.r.t. PH (W )i. We need to de-
termine pi of PH (W )i−1, which
is the shortest prefix of si that is
not represented by PH (W )i−1.
If we search PH (W )i−1 for pi in
a näıve way from the root, then
it takes O(|pi|) time, and this
leads to overall O(n2) time com-
plexity. To efficiently find pi, we
will use the following lemma.
For any character a ∈ Σ and
any node v of PH (W )i−1, let

nmai−1(a, v) denote the nearest marked ancestor of v w.r.t. a on PH (W )i−1.

Lemma 4. For any 2 ≤ i ≤ n, let j = id(parent(si)). Then pi = axc, where
a = si[1] , x = nmai−1(a, pj), and c = si[|x| + 2].

Proof. PH (W )0 is an empty tree, and since s1 = ε, p1 = ε. If i = 2, then clearly
j = 1. For any character a ∈ Σ, nma1(a, ε) = ⊥. Since ⊥ represents a−1 and
a · a−1 = ε for any character a, it holds that

p2 = s2[1] · nma1(s2[1], p1) · s2[|nma1(s2[1], p1)| + 2]
= s2[1] · nma1(s2[1], ε) · s2[|nma1(s2[1], ε)| + 2]
= (s2[1] · (s2[1])−1) · s2[−1 + 2] = ε · s2[1] = s2[1].

For the induction hypothesis, assume that the lemma holds for any 2 ≤ i′ < i.
Let k be the largest integer such that ph is the longest proper prefix of pj with
sk[1] = si[1] = a, where h = id(parent(sk)). Since ph is a proper prefix of
pj , k < i. By the induction hypothesis, pk = ayb where y = nmak−1(a, ph)
and b = sk[|y| + 2]. Then pk is the new node for PH (W )k. Let x = yb. Since
slink(a, x) = ax = pk on PH (W )k, nmak(a, ph) = x. By the assumption of k,
nmak(a, ph) = nmai−1(a, ph) = nmai−1(a, pj) = x, and ax = pk is the longest
prefix of si that is represented by PH (W )i−1 (see also Fig. 4). Hence pi = axc
where c = si[|x| + 2]. Thus the lemma holds. ut

Theorem 1. Given CST (W ) with n nodes representing a set W of strings over
a fixed alphabet Σ, PH (W ) can be constructed in O(n) time.

6



Proof. We construct the position heap in increasing order of id’s of the nodes of
CST (W ). First we create PH (W )1 which consists only of the root node ε, the
auxiliary node ⊥, and edges and suffix links between ⊥ and ε. This can be done
in O(1) time as Σ is fixed.

Suppose we have already constructed PH (W )i−1 for 1 < i ≤ n. Let j =
id(parent(si)), and let a be the edge label from si to sj , i.e., a = si[1]. Let
x = nmai−1(a, pj). As was shown in Lemma 4, we can locate pi = axc using
a nearest marked ancestor query and the suffix link, as pi = slink(a, x)c with
c = si[|x|+2]. Then we create a new edge (ax, c, axc). By Lemma 2, node x can be
found from node pj in amortized O(1) time. The character c can be determined
in O(1) time by Lemma 3, using the level ancestor query on CST (W ).

The auxiliary data structures are updated as follows: By Lemma 1, xc is a
node of PH (W )i. We create a new suffix link slink(a, xc) = axc, and mark node
xc in the copy of PH (W )i w.r.t. character a. xc is a children of x and can be
found in O(1) time from x since Σ is fixed. Marking node xc in the copy tree
can be conducted in amortized O(1) time by Lemma 2.

Consequently, PH (W ) can be constructed in a total of O(n) time. ut

4 Pattern matching with augmented PH (W )
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2 4
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Fig. 5. Illustration for PH (W ) of Fig. 1 anno-
tated with maximal reach pointers, which are
shown by shadowed arcs. The maximal reach
pointers such that mrp(pi) = pi are omitted
for simplicity.

In this section we describe how to
solve the following pattern match-
ing problem for a set of strings W
using PH (W ).

Problem 2. Given CST (W ) for a
set W of strings and a pattern
string q ∈ Σ∗, return all i such that
si[1..|q|] = q, where si is a node of
CST (W ).

In our algorithm to solve Prob-
lem 2, we will use the following
pointers.

Definition 6 (Maximal reach pointer). Let n be the number of nodes in
CST (W ). For any node si of CST (W ), 1 ≤ i ≤ n, let pi be the shortest prefix
of si that is not represented by PH (W )i−1. Then mrp(pi) is a pointer from pi

to the longest prefix of si that is represented in PH (W )n.

Fig. 5 shows PH (W ) of Fig. 1 annotated with maximal reach pointers. See
also CST (W ) of Fig. 2. s6 = aba and p6 = ab, and since there is a node aba in
PH (W ), mrp(ab) = aba.

In what follows, we describe how we can compute all occurrences of a give
pattern q in CST (W ) using PH (W ). The following lemma is useful.

Lemma 5. Given integer i with 1 ≤ i ≤ n and a node p of PH (W ), by us-
ing mrp(p) it takes O(1) time to determine whether i is an occurrence of p in
CST (W ), i.e., si[1..|p|] = p.
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Proof. The proof is essentially the same as the proof for the case where the input
is a single string, given in [9]. ut

We begin with the case where a given pattern q is represented by PH (W ).

Lemma 6. If pattern string q is represented by PH (W ), then we can compute
all occurrences of q in CST (W ) in O(m + r) time, where m = |q| and r is the
number of occurrences to report.

Proof. We search PH (W ) for pattern q from the root. This takes O(m) time as
the alphabet is fixed. For each proper prefix pi of q found in the path from the
root to q, we can check whether i is an occurrence of q or not in O(1) time by
Lemma 5. Since there are m such prefixes, this takes a total of O(m) time.

There can be other occurrences of q. Let pj be any node of PH (W ) that is
in the subtree rooted at q. Since q is a prefix of pj , q is also a prefix of sj , and
thus j is an occurrence of q in CST (W ). We traverse the subtree rooted at q and
report all positions corresponding to the nodes in the subtree, in O(r) time. ut

Secondly, we consider the case where pattern q is not represented by PH (W ).

Lemma 7. If pattern string q is not represented by PH (W ), then there are at
most |q| − 1 occurrences of q in CST (W ).

Proof. Let r be the number of occurrences of q in CST (W ), and assume on the
contrary that r ≥ |q|. Let k be the largest occurrence of q in CST (W ). Then,
the length of pk must be at least |q|, since there are r − 1 occurrences of q in
CST (W ) that are smaller than k, and r − 1 ≥ |q| − 1. Thus q is a prefix of
pk. Since pk is a node of PH (W ), q is also a node of PH (W ). However, this
contradicts the assumption that q is not represented by PH (W ). ut

Each occurrence of q mentioned in the above lemma corresponds to a unique
prefix of q that is represented by PH (W ). Using this property, we can find
occurrences of q as will be described in the following lemma:

Lemma 8. If pattern string q is not represented by PH (W ), then we can com-
pute all occurrences of q in CST (W ) in O(m) time where m = |q|, using PH (W )
annotated with the maximal reach pointers.

Proof. We factorize the pattern string as q = q(1)q(2) · · · q(g) such that q(1) is
the longest prefix of q that is represented by PH (W ), and for each 2 ≤ j ≤ g,
q(j) is the longest prefix of q[

∑j−1
h=1 |q(h)|+1..|q|] that is represented by PH (W ).

This factorization can be computed in O(m) time using PH (W ) if it exists. This
factorization does not exist if and only if q contains a character c which does
not exist in CST (W ). In this case q clearly does not occur in CST (W ). In what
follows, we assume the above factorization of q exists, and we process each factor
q(j) in increasing order of j, as follows. For any 1 ≤ j < g, we consider a set
Lj of positions where q[1..

∑j
h=1 |q(h)|] = q(1)q(2) · · · q(j) occurs in CST (W ),

which are candidates for an occurrence of q.
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– If j = 1: We compute L1 which consists of i such that pi is a prefix of q(1)
and mrp(pi) = q(1). Note that any i with mrp(pi) 6= q(1) cannot be an
occurrence of q since q(1) · q(2)[1] is not represented by PH (W ). Namely
q(1) occurs at i for any i ∈ L1 and q does not occur at i′ for any i′ /∈ L1.
Clearly |L1| ≤ |q(1)| and L1 can be computed in O(|q(1)|) time.

– If 2 ≤ j < g: Assume that Lj−1 is already computed. For any i ∈ Lj−1,
let e(i) = id(la(si,

∑j−1
h=1 |q(h)|)), i.e., se(i) is the (

∑j−1
h=1 |q(h)|)-th ancestor

of si in CST (W ). By Lemma 3 we can compute e(i) in O(1) time. Note
that q(1)q(2) · · · q(j) occurs at i if and only if q(j) occurs at e(i). Then we
compute Lj which consists of i ∈ Lj−1 such that mrp(pe(i)) = q(j). This can
be done in O(|Lj−1| + |q(j)|) time, where |q(j)| is the cost of locating q(j)
in PH (W ). We note that |Lj | ≤ |q(j)| holds.

– If j = g: We have Lg−1. In a similar way to the above case, q(1)q(2) · · · q(g)
occurs at i if and only if q(g) occurs at e(i) for some i ∈ Lg−1. It follows
from Lemma 5 that we can determine whether e(i) is an occurrence of q(g)
in O(1) time for any i ∈ Lg−1, and hence we can compute all positions where
q occurs in CST (W ) in O(|Lg−1| + |q(g)|) time.

In total, it takes O(|q(1)|+
∑g

j=2(|Lj−1|+ |q(j)|)) = O(|q(1)|+
∑g

j=2(|q(j−1)|+
|q(j)|)) = O(m) time. ut

What remains is how to compute the maximal reach pointers of the nodes of
PH (W ). We have the following result.

Lemma 9. Given PH (W ) with n nodes, we can compute mrp(pi) in a total of
O(n) time for all 1 ≤ i ≤ n, assuming Σ is fixed.

Proof. We can compute mrp(pi) for all 1 ≤ i ≤ n in a similar way to the
computation of the suffix links described in the proof of Theorem 1. We compute
mrp(pi) in increasing order of i. Clearly mrp(p1) = mrp(ε) = ε. Assume that
we have already computed mrp(pi−1) for 1 < i ≤ n. Let j = id(parent(si))
and y = mrp(pj). Since j < i, by the induction hypothesis mrp(pj) has been
computed. y is the longest prefix of sj that is represented by PH (W )n, and
hence mrp(pi) is at most |y| + 1 long, since otherwise it contradicts Lemma 1.
This implies that mrp(pi) = si[1] · nman(si[1], y) = slink(si[1],nman(s1[1], y)).
By using the suffix link and by Lemma 2, mrp(pi) can be computed in amortized
O(1) time for a fixed alphabet. This completes the proof. ut

Following the above lemmas, we obtain the main result of this section:

Theorem 2. We can augment PH (W ) in O(n) time and space so that all occur-
rences of a given pattern in CST (W ) can be computed in O(m + r) time, where
m is the length of the pattern and r is the number of occurrences to report.

5 Updating PH (W ) when CST(W ) is edited

Ehrenfeucht et al. [9] showed how to update the position heap of a single string
when a block of characters of size b is inserted/deleted from the string, in amor-
tized O((h′ + b)h′ log n′) time, where h′ is the maximum height of the position
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heap and n′ is the maximum length of the string while editing. We note that
in that dynamic scenario the time complexity of pattern matching requires an
extra multiplicative log n factor compared to the static scenario, since operations
(including random access) on a string represented by a dynamic array require
O(log n) amortized time.

In this section, we consider updates on the position heap when the input
common-suffix trie is edited. As a first step towards rich edit operations, we deal
with the following operations:

– AddLeaf: Add a new leaf node from an arbitrary node u in the common-
suffix trie with edge label a ∈ Σ, where no edges from u to its children are
labeled with a, and update the position heap accordingly.

– RemoveLeaf: Remove an arbitrary leaf and its corresponding edge from the
common suffix trie, and update the position heap accordingly.

We will use the following result for dynamic trees.

Theorem 3 ([1]). A dynamic tree with n nodes can be maintained in O(n) space
so that insertion/deletion of a node, and level ancestor queries are supported in
O(log n) time.

Since node-to-node correspondence of between the common-suffix trie and the
position heap can be dynamically changed, we maintain a pointer cstp(p) for any
node p of the position heap such that cstp(p) always points to the corresponding
node of the common-suffix trie.

Here we give some remarks on id(v) of node v in CST (W ). In the previous
sections, id(v) is equivalent to the order of v in Suffix≺(W ). However when W is
updated, maintaining such values requires Θ(n) time. To overcome this, we assign
to v a rational number id(v) = (id(preW (v)) + id(sucW (v)))/2, where preW (v)
and sucW (v) are the predecessor/successor of v in Suffix≺(W ), respectively. We
maintain pre and suc by a dynamic list bflist . By Theorem 3, insertion, deletion
and random access on bflist can be supported in O(log n) time.

In what follows, we show how to maintain (1) the data structure for level
ancestor queries on CST (W ), (2) the augmented position heap PH (W ), and
(3) bflist so that we can solve the pattern matching problem on CST (W ) in
O(m log n) time, where the log n factor comes from level ancestor queries on
the dynamic common-suffix trie. By Definition 2, the main task of updating the
position heap is to keep a heap property w.r.t. id(cstp(p)).

Theorem 4. Operations AddLeaf and RemoveLeaf can be supported in O(h log n)
and O(h) time, respectively, where h is the height of PH (W ).

Proof. In both operations, the data structure for level ancestor queries can be
updated in O(log n) time by Theorem 3. Let CST (W ′) denote the new common-
suffix trie after addition/removal of a leaf. Also we will distinguish pointers to the
common-suffix trie before and after the update by cstp and cstp′, respectively.

AddLeaf: Let v be the new leaf added to CST (W ), and let u be the parent of
v in CST (W ′). Firstly we search for preW ′(v) and sucW ′(v) to determine id(v).
We can find them in O(log2 n) time as follows:
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– If u has a child in CST (W ), then at least one of preW ′(v) and sucW ′(v)
must be a child of u, which can be found in O(1) time as Σ is fixed. Then
the other can be found in O(1) time using bflist .

– If u has no child, we search for node v′ = arg max{id(z) | id(parent(z)) <
id(u)}, i.e., v′ = preW ′(v). Since every id(v) is monotonically increasing in
breadth-first order, id(parent(v)) is also monotone, and hence we can find v′

in O(log2 n) time by a binary search on bflist based on level ancestor queries.
sucW ′(v) can be obtained from preW ′(v) in constant time using bflist .

Next we traverse PH (W ) from the root until finding the first node p which
satisfies id(v) < id(cstp(p)). If such does not exist, the traversal is finished at
node p′ such that cstp(p′) is the longest prefix of v that is represented in PH (W ).
Since v cannot be a prefix of p′, we make new leaf q = v[1..|p′|+ 1] from p′. If p
exists, cstp′(p) = v and floated cstp(p) is pushed down, i.e., cstp′(q) = cstp(p)
with q = cstp(p)[1..|p|+1] ∈ PH (W ′), and if q exists in PH (W ), floated cstp(q)
is pushed down recursively until getting q /∈ PH (W ).

While we push down floated node pointers, we make the corresponding max-
imal reach pointers accompanied. Also, for r ∈ PH (W ′) with cstp′(r) = v,
mrp(r) can be computed in O(h) time by traversing PH (W ′) from the root.
mrp is dynamically maintained by updating mrp(r) to q for any r ∈ PH (W ′)
such that mrp(r) = parent(q) and cstp(r)[|q|] = q[|q|].

Since only the nodes in the path from the root to q (the new leaf in PH (W ′))
are affected by the update, updating from cstp to cstp′ and updating mrp takes
O(h log n) time, where the log n factor comes from level ancestor queries on the
common-suffix trie. Hence the update on AddLeaf takes O(h log n + log2 n) =
O((h + log n) log n) = O(h log n) time overall, where the last equation is derived
from n ≤ |Σ|h and log2 n ∈ O(h).

RemoveLeaf: Let v be the node to be removed from CST (W ), and let p be the
node in PH (W ) such that cstp(p) = v. What is required is to “remove affection”
of v from PH (W ), i.e., clear cstp(p) and if needed float up descendants keeping
a heap property. More specifically, if p has a child cstp′(p) = cstp(q) where q is
the child of p with the minimum id among the children of p, and if q has a child,
then repeat floating up the child recursively until getting q which has no child
in PH (W ). Finally we get the leaf node q to be deleted from the position heap.

While we float up node pointers, we make the corresponding maximal reach
pointers accompanied. In addition, the update of mrp is accomplished by up-
dating mrp(r) to be parent(q) for any r ∈ PH (W ) with mrp(r) = q.

Since only the nodes in the path from the root to q are affected by the update,
all the updates require a total of O(h) time. Note that it is different from the
case of AddLeaf in that no level ancestor queries on the common-suffix trie are
required. Hence the update on RemoveLeaf takes in total O(h + log n) = O(h)
time. ut
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